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practical guide for the analysis and interpretation of Regression

Discontinuity (RD) designs that encourages the use of a common set of
practices and facilitates the accumulation of RD-based empirical

evidence. In this Element, the authors discuss the foundations of the
canonical Sharp RD design, which has the following features: (i) the

score is continuously distributed and has only one dimension, (ii) there
is only one cutoff, and (iii) compliance with the treatment assignment is
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A Practical Introduction to RD Designs 1

1 Introduction
An important goal in the social sciences is to understand the causal effect of
a treatment on outcomes of interest. As social scientists, we are interested in
questions as varied as the effect of minimum wage increases on unemployment,
the role of information dissemination on political participation, the impact of
educational reforms on student achievement, and the effects of conditional
cash transfers on children’s health. The analysis of such effects is relatively
straightforward when the treatment of interest is randomly assigned, as this
ensures the comparability of units assigned to the treatment and control con-
ditions. However, by its very nature, many interventions of interest to social
scientists cannot be randomly assigned for either ethical or practical reasons –
often both.

In the absence of randomized treatment assignment, research designs that
allow for the rigorous study of non-experimental interventions are particularly
promising. One of these is the Regression Discontinuity (RD) design, which
has emerged as one of the most credible non-experimental strategies for the
analysis of causal effects. In the RD design, all units have a score, and a treat-
ment is assigned to those units whose value of the score exceeds a known cutoff
or threshold, and not assigned to those units whose value of the score is below
the cutoff. The key feature of the design is that the probability of receiving
the treatment changes abruptly at the known threshold. If units are unable to
perfectly “sort” around this threshold, the discontinuous change in this proba-
bility can be used to learn about the local causal effect of the treatment on an
outcome of interest, because units with scores barely below the cutoff can be
used as a comparison group for units with scores barely above it.

The first step to employ the RD design in practice is to learn how to recog-
nize it. There are three fundamental components in the RD design – a score,
a cutoff, and a treatment. Without these three basic defining features, RD
methodology cannot be employed. Therefore, an RD analysis is not always
applicable to data, unlike other non-experimental methods such as those based
on regression adjustments or more sophisticated selection-on-observables ap-
proaches, which can always be used to describe the conditional relationship
between outcomes and treatments. The difference arises because RD is a re-
search design, not an estimation strategy. In order to study causal effects with
an RD design, the score, treatment, and cutoff must exist and be well defined,
and the relationship between them must satisfy particular conditions that are
objective and verifiable. The key defining feature of any canonical RD design is
that the probability of treatment assignment as a function of the score changes

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108684606
Downloaded from https://www.cambridge.org/core. IP address: 152.115.89.212, on 22 Nov 2019 at 20:18:44, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108684606
https://www.cambridge.org/core


2 Quantitative and Computational Methods for the Social Sciences

discontinuously at the cutoff – a condition that is directly testable. In addition,
the RD design comes with an extensive array of falsification tests and related
empirical approaches that can be used to offer empirical support for its validity,
enhancing the credibility of particular applications. These features give the RD
design an objective basis for implementation and testing that is usually lack-
ing in other non-experimental empirical strategies, and endow it with superior
credibility among non-experimental methods.

The popularity of the RD design has grown markedly over recent decades,
and it is now used frequently in Economics, Political Science, Education, Epi-
demiology, Criminology, and many other disciplines. The RD design is also
commonly used for impact and policy evaluation outside academia. This recent
proliferation of RD applications has been accompanied by great disparities in
how RD analysis is implemented, interpreted, and evaluated. RD applications
often differ significantly in how authors estimate the effects of interest, make
statistical inferences, present their results, evaluate the plausibility of the un-
derlying assumptions, and interpret the estimated effects. The lack of consen-
sus about best practices for validation, estimation, inference, and interpretation
of RD results makes it hard for scholars and policy-makers to judge the plau-
sibility of the evidence and to compare results from different RD studies.

In both this Element and the accompanying Element, A Practical Introduc-

tion to Regression Discontinuity Designs: Extensions (Cattaneo, Idrobo, and
Titiunik, forthcoming), our goal is to provide an accessible and practical guide
for the analysis and interpretation of RD designs that encourages the use of a
common set of practices and facilitates the accumulation of RD-based empiri-
cal evidence. In this Element, our focus is on the canonical RD setup that has
the following features: (i) the score is continuously distributed and has only
one dimension, (ii) there is only one cutoff, and (iii) compliance with treat-
ment assignment is perfect, i.e., all units with score equal to or greater than the
cutoff actually receive the treatment, and all units with score below the cutoff
fail to receive the treatment and instead receive the control condition. We call
this setup the Sharp RD design, and assume it throughout this Element. In the
accompanying Element, we discuss extensions and departures from the basic
Sharp RD design, including Fuzzy RD designs where compliance is imperfect,
RD designs with multiple cutoffs, RD designs with multiple scores, geographic
RD designs, and RD designs with discrete running variables.

In addition to the existence of a treatment assignment rule based on a score
and a cutoff, the formal interpretation, estimation, and inference of RD treat-
ment effects requires several other assumptions. First, we need to define the
parameter of interest and provide assumptions under which this parameter
is identifiable, i.e., conditions under which it is uniquely estimable in some
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A Practical Introduction to RD Designs 3

objective sense (finite sample or super-population). Second, we must impose
additional assumptions to ensure that the parameter can be estimated; these
assumptions will naturally vary according to the estimation/inference method
employed and the parameter under consideration. There are two main frame-
works for RD analysis, one based on continuity assumptions and another based
on local randomization assumptions. Each of these defines different parameters
of interest, relies on different identification assumptions, and employs different
estimation and inference methods. These two alternative frameworks also gen-
erate different testable implications, which can be used to assess their validity
in specific applications; see Cattaneo, Titiunik, and Vazquez-Bare (2017) for
more discussion.

In this Element, we discuss the standard or continuity-based framework for
RD analysis. This approach is based on conditions that ensure the smoothness
of the regression functions, and is the framework most commonly employed
in practice. We discuss the alternative local randomization framework for RD
analysis in the second Element. This latter approach is based on conditions
that ensure that the treatment can be interpreted as being randomly assigned
for units near the cutoff. Both the continuity-based approach and the local ran-
domization approach rely on the assumption that units that receive very similar
score values on opposite sides of the cutoff are comparable to each other in all
relevant aspects, except for their treatment status. The main distinction be-
tween these frameworks is how the idea of comparability is formalized: in the
continuity-based framework, comparability is conceptualized as continuity of
average (or some other feature of) potential outcomes near the cutoff, while in
the local randomization framework, comparability is conceptualized as condi-
tions that mimic a randomized experiment in a neighborhood around the cutoff.

Our upcoming discussion of the continuity-based approach focuses on the
required assumptions, the adequate interpretation of the target parameters, the
graphical illustration of the design, the appropriate methods to estimate treat-
ment effects and conduct statistical inference, and the available strategies to
evaluate the plausibility of the design. Our presentation of the topics is inten-
tionally geared towards practitioners: our main goal is to clarify conceptual
issues in the analysis of RD designs, and offer an accessible guide for ap-
plied researchers and policy-makers who wish to implement RD analysis. For
this reason, we omit most technical discussions, but provide references for the
technically inclined reader at the end of each section.

To ensure that our discussion is most useful to practitioners, we illustrate all
methods by revisiting a study conducted by Meyersson (2014), who analyzed
the effect of Islamic political representation in Turkey’s municipal elections
on the educational attainment of women. The score in this RD design is the
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4 Quantitative and Computational Methods for the Social Sciences

margin of victory of the largest Islamic party in the municipality, a (nearly)
continuous random variable, which makes the example suitable to illustrate
both the continuity-based methods in this Element, and also the local random-
ization methods in our second Element.

All the RD methods we discuss and illustrate are implemented using vari-
ous general-purpose software packages, which are free and available for both
R and Stata, two leading statistical software environments widely used in
the social sciences. Each numerical illustration we present includes an R com-
mand with its output, and the analogous Stata command that reproduces the
same analysis, though we omit the Stata output to avoid repetition. The lo-
cal polynomial methods for continuity-based RD analysis are implemented
in the package rdrobust, which is presented and illustrated in three com-
panion software articles: Calonico, Cattaneo, and Titiunik (2014a), Calonico,
Cattaneo, and Titiunik (2015b) and Calonico, Cattaneo, Farrell, and Titiunik
(2017). This package has three functions specifically designed for continuity-
based RD analysis: rdbwselect for data-driven bandwidth selection methods,
rdrobust for local polynomial point estimation and inference, and rdplot

for graphical RD analysis. In addition, the package rddensity, discussed by
Cattaneo, Jansson, and Ma (2018), provides manipulation tests of density dis-
continuity based on local polynomial density estimation methods. The accom-
panying package rdlocrand, which is presented and illustrated by Cattaneo,
Titiunik, and Vazquez-Bare (2016), implements the local randomization meth-
ods discussed in the second Element.

R and Stata software, replication codes, and other supplementary materi-
als, are available at https://sites.google.com/site/rdpackages/. In
that website, we also provide replication codes for two other empirical appli-
cations, both following closely our discussion. One employs the data on US
Senate incumbency advantage originally analyzed by Cattaneo, Frandsen, and
Titiunik (2015), while the other uses the Head Start data originally analyzed by
Ludwig and Miller (2007) and employed in Cattaneo, Titiunik, and Vazquez-
Bare (2017). Furthermore, a third distinct empirical illustration of the methods
discussed in this Element, using the data of Klašnja and Titiunik (2017), is
also available, and further discussed in Cattaneo, Titiunik, and Vazquez-Bare
(2019).

To conclude, we emphasize that our main goal is to provide a succinct prac-
tical guide for empirical RD analysis, not to offer a comprehensive review of
the literature on RD methodology – though we do offer references after each
topic is presented for those interested in further reading. For early review ar-
ticles see Imbens and Lemieux (2008) and Lee and Lemieux (2010), and for
an edited volume with a contemporaneous overview of the RD literature see
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A Practical Introduction to RD Designs 5

Cattaneo and Escanciano (2017). We are currently working on a literature
review (Cattaneo and Titiunik, 2019) that complements these two practical
Elements. See also Abadie and Cattaneo (2018) for an overview of program
evaluation methods, and further references on RD designs.

2 The Sharp RD Design
In the RD design, all units in the study receive a score (also known as running

variable, forcing variable, or index), and a treatment is assigned to those units
whose score is above a known cutoff and not assigned to those units whose
score is below the cutoff. Our running example is based on the study by Mey-
ersson (2014), who explored the effect of Islamic political representation in
Turkey’s municipal elections on the educational attainment of women. In this
study, the units are municipalities and the score is the margin of victory of the
(largest) Islamic party in the 1994 Turkish mayoral elections. The treatment
is the Islamic party’s electoral victory, and the cutoff is zero: municipalities
elect an Islamic mayor when the Islamic vote margin is above zero, and elect a
secular mayor otherwise.

These three components – score, cutoff, and treatment – define the RD
design in general, and characterize its most important feature: in the RD
design, unlike in other non-experimental studies, the assignment of the
treatment follows a rule that is known (at least to the researcher) and hence
empirically verifiable. To formalize, we assume that there are n units, indexed
by i = 1,2, . . . ,n, each unit has a score or running variable Xi , and c is a
known cutoff. Units with Xi ≥ c are assigned to the treatment condition,
and units with Xi < c are assigned to the control condition. This treatment
assignment, denoted Ti , is defined as Ti = 1(Xi ≥ c), where 1(·) is the
indicator function, and it implies that the probability of treatment assignment
as a function of the score changes discontinuously at the cutoff.

Being assigned to the treatment condition, however, is not the same as
receiving or complying with the treatment. As in experimental and other non-
experimental settings, this distinction is important in RD designs because
non-compliance introduces complications and typically requires stronger as-
sumptions to learn about treatment effects of interest. Following prior litera-
ture, we call Sharp RD design any RD design where the treatment condition
assigned is identical to the treatment condition actually received for all units.
Any RD design where compliance with treatment assignment is imperfect is
referred to as Fuzzy RD design. In this Element, we focus exclusively on the
Sharp RD design with a single score and a single cutoff. In the second Element
(A Practical Introduction to Regression Discontinuity Designs: Extensions,
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Figure 1 Conditional Probability of Receiving Treatment
in the Sharp RD Design

Cattaneo, Idrobo, and Titiunik, forthcoming), we discuss and illustrate the
Fuzzy RD design, extending the basic Sharp RD setup to settings where com-
pliance with treatment is imperfect. (The second Element also discusses other
extensions, including settings with multiple scores and multiple cutoffs.)

Regardless of whether we have perfect or imperfect compliance, a defining
feature of all RD designs is that the conditional probability of actually receiv-
ing treatment given the score changes discontinuously at the cutoff. We illus-
trate this for the Sharp RD design in Figure 1, where we plot the conditional
probability of receiving treatment given the score, P(Ti = 1|Xi = x), for dif-
ferent values of the running variable Xi . As shown in the figure, in a Sharp RD
design, this probability changes exactly from zero to one at the cutoff. Since in
the Sharp RD design treatment assigned and treatment received are identical,
this figure reflects both treatment assignment and treatment take-up.

Although it is common to use the language of experimental methods and
talk about the RD treatment “assignment,” in some RD applications units find
themselves in different circumstances depending on their score value, and it
is only ex post that the researcher interprets one of those circumstances as a
treatment and the other as a control condition. This is different from an exper-
iment, where the treatment and control conditions are always defined ex ante
by the researcher, and units are explicitly assigned to one of these conditions.
For example, in the RD design studied by Meyersson (2014), a municipality is
treated when it elects a mayor from an Islamic party, and control when it elects
a mayor from a secular party. In this case, there is no explicit assignment of
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A Practical Introduction to RD Designs 7

municipalities to different ex ante experimental conditions; rather, depending
on the outcome of the election, municipalities find themselves in different
situations (with or without an Islamic mayor), which can be understood as
treatment versus control for some analytic purposes. These conceptual distinc-
tions between experimental and RD treatment assignments do not affect the
validity of the RD mathematical expressions. But the reader should keep in
mind these caveats when we employ the term “treatment assignment” in the
RD context.

Following the causal inference literature, we adopt the potential outcomes
framework and assume that each unit has two potential outcomes, Yi (1) and
Yi (0), corresponding, respectively, to the outcomes that would be observed un-
der the treatment or control conditions. In this framework, treatment effects
are defined in terms of comparisons between features of (the distribution of)
both potential outcomes, such as their means, variances or quantiles. Although
every unit is assumed to have both Yi (1) and Yi (0), these outcomes are called
potential because only one of them is observed. If unit i receives the treatment,
we will observe Yi (1), the unit’s outcome under treatment, and Yi (0) will re-
main latent or unobserved. Similarly, if i receives the control condition, we will
observe Yi (0) but not Yi (1). This results in the so-called fundamental problem
of causal inference, and implies that the treatment effect at the individual level
is fundamentally unknowable.

The observed outcome is

Yi = (1 − Ti ) · Yi (0) + Ti · Yi (1) =
⎧⎪
⎨
⎪
⎩

Yi (0) if Xi < c

Yi (1) if Xi ≥ c.

Throughout this Element, we adopt the usual econometric perspective that sees
the data (Yi ,Xi )ni=1 as a random sample from a larger population, taking the
potential outcomes (Yi (1),Yi (0))n

i=1 as random variables. We consider an al-
ternative perspective in the second Element when we discuss inference in the
context of the local randomization RD framework.

In the specific context of the Sharp RD design, the fundamental problem of
causal inference occurs because we only observe the outcome under control,
Yi (0), for those units whose score is below the cutoff, and we only observe the
outcome under treatment, Yi (1), for those units whose score is above the cutoff.
We illustrate this problem in Figure 2, which plots the average potential out-
comes given the score, E[Yi (1) |Xi = x] and E[Yi (0) |Xi = x], against the score.
In statistics, conditional expectation functions such as these are usually called
regression functions. As shown in Figure 2, the regression function E[Yi (1) |Xi ]

is observed for values of the score to the right of the cutoff – because when
Xi ≥ c, the observed outcome Yi is equal to the potential outcome under treat-
ment, Yi (1), for every i. This is represented with the solid red line. However,
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Figure 2 RD Treatment Effect in the Sharp RD Design

to the left of the cutoff, all units are untreated, and therefore E[Yi (1) |Xi ] is not
observed (represented by a dashed red line). A similar phenomenon occurs for
E[Yi (0) |Xi ], which is observed for values of the score to the left of the cutoff
(solid blue line), Xi < c, but unobserved for Xi ≥ c (dashed blue line). Thus,
the observed average outcome given the score is

E[Yi |Xi ] =
⎧⎪
⎨
⎪
⎩

E[Yi (0) |Xi ] if Xi < c

E[Yi (1) |Xi ] if Xi ≥ c.

The Sharp RD design exhibits an extreme case of lack of common
support, as units in the control (Ti = 1(Xi ≥ c) = 0) and treatment
(Ti = 1(Xi ≥ c) = 1) groups cannot have the same value of the running
variable (Xi). This feature sets aside RD designs from other non-experimental
settings, and highlights that RD analysis fundamentally relies on extrapolation
towards the cutoff point. As we discuss throughout this Element, a central
goal of empirical RD analysis is to adequately perform (local) extrapolation
in order to compare control and treatment units. This unique feature of the
RD design also makes causal interpretation of some parameters potentially
more difficult; see Cattaneo, Titiunik, and Vazquez-Bare (2017) for further
discussion on this point.

As shown in Figure 2, the average treatment effect at a given value of the
score, E[Yi (1) |Xi = x] − E[Yi (0) |Xi = x], is the vertical distance between the
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A Practical Introduction to RD Designs 9

two regression curves at that value. This distance cannot be directly estimated
because we never observe both curves for the same value of x. However, a
special situation occurs at the cutoff c: this is the only point at which we
“almost” observe both curves. To see this, we imagine having units with score
exactly equal to c, and units with score barely below c (that is, with score
c − ε for a small and positive ε). The former units would receive treatment,
and the latter would receive control. Yet if the values of the average poten-
tial outcomes at c are not abruptly different from their values at points near
c, the units with Xi = c and Xi = c − ε would be very similar except for
their treatment status, and we could approximately calculate the vertical dis-
tance at c using observed outcomes. In the figure, the vertical distance at c is
E[Yi (1) |Xi = c] − E[Yi (0) |Xi = c] ≡ μ+ − μ−; this is precisely the treatment
effect that can be estimated with a Sharp RD design. The Sharp RD treatment

effect is thus formally defined as

τSRD ≡ E[Yi (1) − Yi (0) |Xi = c].

This parameter captures the (reduced form) treatment effect for units with
score values Xi = c. It answers the following question: what would be the
average outcome change for units with score level Xi = c if we switched their
status from control to treated? As we discuss below, this treatment effect is,
by construction, local in nature and, in the absence of additional assumptions,
not informative about treatment effects at other levels of the score. Moreover,
since the definition of a Sharp RD design implies that all units with Xi = c are
treated, τSRD can be interpreted as a (local, RD) average treatment effect on the
treated.

The assumption of comparability between units with very similar values
of the score but on opposite sides of the cutoff is the fundamental concept
on which all RD designs are based. This idea was first formalized by Hahn,
Todd, and van der Klaauw (2001) using continuity assumptions. These authors
showed that, among other conditions, if the regression functions E[Yi (1) |Xi=x]

and E[Yi (0) |Xi = x], seen as functions of x, are continuous at x = c, then in a
Sharp RD design we have

E[Yi (1) − Yi (0) |Xi = c] = lim
x↓c

E[Yi |Xi = x] − lim
x↑c

E[Yi |Xi = x]. (2.1)

The result in Equation (2.1) says that, if the average potential outcomes are
continuous functions of the score at c, the difference between the limits of the
treated and control average observed outcomes as the score converges to the
cutoff is equal to the average treatment effect at the cutoff. Informally, a func-
tion g(x) is continuous at the point x = a if the values of g(x) and g(a) get
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close to each other as x gets close to a. In the RD context, continuity means that
as the score x gets closer and closer to the cutoff c, the average potential out-
come function E[Yi (0) |Xi = x] gets closer and closer to its value at the cutoff,
E[Yi (0) |Xi = c] (and analogously for E[Yi (1) |Xi = x]). Thus, continuity gives
a formal justification for estimating the Sharp RD effect by focusing on obser-
vations above and below the cutoff in a very small neighborhood around it. By
virtue of being very close to the cutoff, the observations in this neighborhood
will have very similar score values; and by virtue of continuity, their average
potential outcomes will also be similar. Therefore, continuity offers one justifi-
cation for using observations just below the cutoff to approximate the average
outcome that units just above the cutoff would have had if they had received
the control condition instead of the treatment.

2.1 The Effect of Islamic Political Representation
on Women’s Education

We now introduce in more detail the empirical example that we employ
throughout this Element, originally analyzed by Meyersson (2014), henceforth
Meyersson. This example employs a Sharp RD design, based on close elections
in Turkey, to study the impact of having a mayor from an Islamic party on vari-
ous outcomes. The running variable is based on vote shares, as popularized by
the work of Lee (2008).

Meyersson is broadly interested in the effect of Islamic parties’ control of
local governments on women’s rights, in particular on the educational attain-
ment of young women. The methodological challenge is that municipalities
where the support for Islamic parties is high enough to result in the election
of an Islamic mayor may differ systematically from municipalities where the
support for Islamic parties is more tenuous and results in the election of a sec-
ular mayor. (For brevity, we refer to a mayor who belongs to one of the Islamic
parties as an “Islamic mayor,” and to a mayor who belongs to a non-Islamic
party as a “secular mayor.”) If some of the characteristics on which both types
of municipalities differ affect (or are correlated with) the educational outcomes
of women, a simple comparison of municipalities with an Islamic versus a sec-
ular mayor will be misleading. For example, municipalities where an Islamic
mayor wins in 1994 may be on average more religiously conservative than mu-
nicipalities where a secular mayor is elected. If religious conservatism affects
the educational outcomes of women, the naı̈ve comparison between munici-
palities controlled by an Islamic versus a secular mayor will not successfully
isolate the effect of the Islamic party’s control of the local government. In-
stead, the effect of interest will be contaminated by differences in the degree of
religious conservatism between the two groups.
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(a) Raw Comparison of Means (b) Local Comparison of Means

Figure 3 Municipalities with Islamic Mayor versus Municipalities with
Secular Mayor (Meyersson data)

This challenge is illustrated in Figure 3, where we plot the percentage of
young women who had completed high school by 2000 against the Islamic
margin of victory in the 1994 mayoral elections (more information on these
variables is given below). These figures are examples of so-called RD plots,
which we discuss in detail in Section 3. In Figure 3(a), we show the scatter plot
of the raw data (where each point is an observation), superimposing the over-
all sample mean for each group; treated observations (municipalities where an
Islamic mayor is elected) are located to the right of zero, and control observa-
tions (municipalities where a secular mayor is elected) are located to the left
of zero. The raw comparison reveals a negative average difference: munici-
palities with an Islamic mayor have, on average, lower educational attainment
of women. Figure 3(b) shows the scatter plot for the subset of municipalities
where the Islamic margin of victory is within 50 percentage points, a range
that includes 83% of the total observations; this second figure superimposes a
fourth-order polynomial fit separately on either side of the cutoff. Figure 3(b)
reveals that the negative average effect in Figure 3(a) arises because there is an
overall negative relationship or slope between Islamic vote percentage and ed-
ucational attainment of women for the majority of the observations, so that the
higher the Islamic margin of victory, the lower the educational attainment of
women. Thus, a naı̈ve comparison of treated and control municipalities, which
differ systematically in the Islamic vote percentage, will mask systematic dif-
ferences and may lead to incorrect inferences about the effect of electing an
Islamic mayor.

The RD design can be used in cases such as these to isolate a
treatment effect of interest from all other systematic differences between
treated and control groups. Under appropriate assumptions, a comparison of
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Table 1 Descriptive Statistics for the Meyersson Data

Variable Mean Median Std. Dev. Min. Max.

Y 16.306 15.523 9.584 0.000 68.038

X −28.141 −31.426 22.115 −100.000 99.051

T 0.120 0.000 0.325 0.000 1.000

Percentage of men
aged 15–20 with
high school
education

19.238 18.724 7.737 0.000 68.307

Islamic percentage
of votes in 1994

13.872 7.029 15.385 0.000 99.526

Number of parties
receiving votes in
1994

5.541 5.000 2.192 1.000 14.000

Log population in
1994

7.840 7.479 1.188 5.493 15.338

Percentage of
population below
19 in 2000

40.511 39.721 8.297 6.544 68.764

Percentage of
population above
60 in 2000

9.222 8.461 3.960 1.665 27.225

Gender ratio in 2000 107.325 103.209 25.293 74.987 1033.636

Household size in
2000

5.835 5.274 2.360 2.823 33.634

District center 0.345 0.000 0.475 0.000 1.000

Province center 0.023 0.000 0.149 0.000 1.000

Sub-metro center 0.022 0.000 0.146 0.000 1.000

Note: The number of observations for all variables is 2,629.

municipalities where the Islamic party barely wins the election versus munici-
palities where the Islamic party barely loses will reveal the causal (local) effect
of Islamic party control of the local government on the educational attainment
of women. If parties cannot systematically manipulate the vote percentage they
obtain, observations just above and just below the cutoff will tend to be compa-
rable in terms of all characteristics with the exception of the party that won the
1994 election. Thus, right at the cutoff, the comparison is free of the complica-
tions introduced by systematic observed and unobserved differences between
the groups. This strategy is illustrated in Figure 3(b), where we see that, despite
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the negative slope on either side, right near the cutoff the effect of an Islamic
victory on the educational attainment of women is positive, in stark contrast to
the negative difference-in-means in Figure 3(a).

Meyersson’s original study employs an RD design to circumvent these
methodological challenges and to estimate a causal effect of local Islamic rule.
The design is focused exclusively on the 1994 Turkish mayoral elections. The
unit of analysis is the municipality, and the score is the Islamic margin of vic-
tory, defined as the difference between the vote percentage obtained by the
largest Islamic party, and the vote percentage obtained by the largest secular
party opponent. Two Islamic parties competed in the 1994 mayoral elections,
Refah and Büyük Birlik Partisi (BBP). However, the results essentially capture
the effect of a victory by Refah, as the BBP received only 0.94% of the national
vote and won in only 11 of the 329 municipalities where an Islamic mayor was
elected. As defined, the Islamic margin of victory can be positive or negative,
and the cutoff that determines an Islamic party victory is located at zero. Given
this setup, the treatment group consists of municipalities that elected a mayor
from an Islamic party in 1994, and the control group consists of municipalities
that elected a mayor from a secular party. The outcome we re-analyze is the
educational attainment of women who were (potentially) in high school during
the period 1994–2000, calculated as the percentage of the cohort of women
aged 15 to 20 in 2000 who had completed high school by 2000 according to
the 2000 Turkish census. For brevity, we refer to this outcome as the educa-
tional attainment of women.

In order to streamline the computer code for our analysis, we rename the
variables in the following way.

• Y: educational attainment of women, measured as the percentage of women
aged 15 to 20 in 2000 who had completed high school by 2000.

• X: vote margin obtained by the Islamic party in the 1994 Turkish mayoral
elections, measured as the vote percentage obtained by the Islamic party
minus the vote percentage obtained by its strongest secular party opponent.

• T: electoral victory of the Islamic party in 1994, equal to 1 if the Islamic
party won the mayoral election and 0 otherwise.

The Meyersson dataset also contains several predetermined covariates that
we use in subsequent sections to investigate the plausibility of the RD de-
sign, and also to illustrate covariate-adjusted estimation methods. The co-
variates that we include in our analysis are the Islamic vote percentage in
1994 (vshr islam1994), the number of parties receiving votes in 1994

(partycount), the logarithm of the population in 1994 (lpop1994), an in-
dicator equal to one if the municipality elected an Islamic party in the previous
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election in 1989 (i89), a district center indicator (merkezi), a province center
indicator (merkezp), a sub-metro center indicator (subbuyuk), and a metro
center indicator (buyuk).

Table 1 presents descriptive statistics for the three RD variables (Y, X, and T),
and the municipality-level predetermined covariates. The outcome of interest
(Y) has a minimum of 0 and a maximum of 68.04, with a mean of 16.31.
This implies that there is at least one municipality in 2000 where no women
in the 15-to-20 age cohort had completed high school, and on average 16.31%

of women in this cohort had completed high school by the year 2000. The
Islamic vote margin (X) ranges from −100 (party receives zero votes) to 100

(party receives 100% of the vote), and it has a mean of −28.14, implying that
on average the Islamic party loses by 28.14 percentage points. This explains
why the mean of the treatment variable (T) is 0.120, since this indicates that in
1994 an Islamic mayor was elected in only 12.0% of the municipalities. This
small proportion of victories is consistent with the finding that the average
margin of victory is negative and thus leads to electoral loss.

2.2 The Local Nature of RD Effects

The Sharp RD parameter presented above can be interpreted as causal in the
sense that it captures the average difference in potential outcomes under treat-
ment versus control. However, in contrast to other causal parameters in the
potential outcomes framework, this average difference is calculated at a single
point on the support of a continuous random variable (the score Xi ), and as a
result captures a causal effect that is local in nature. According to some per-
spectives, this parameter cannot even be interpreted as causal because it cannot
be reproduced via manipulation or experimentation.

Regardless of its status as a causal parameter, the RD treatment effect tends
to have limited external validity, that is, the RD effect is generally not repre-
sentative of the treatment effects that would occur for units with scores away
from the cutoff. As discussed above, in the canonical Sharp RD design, the
RD effect can be interpreted graphically as the vertical difference between
E[Yi (1) |Xi = x] and E[Yi (0) |Xi = x] at the point where the score equals the
cutoff, x = c. In the general case where the average treatment effect varies as a
function of the score Xi , as is very common in applications, this effect may not
be informative of the average effect of treatment at values of x different from
c. For this reason, in the absence of specific (usually restrictive) assumptions
about the global shape of the regression functions, the effect recovered by the
RD design is only the average effect of treatment for units local to the cutoff,
i.e., for units with score values Xi = c.
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In the context of the Meyersson application, the lack of external validity
is reflected in the focus on close, as opposed to all, elections. As illustrated in
Figure 3(a), it seems that the educational attainment of women is higher in mu-
nicipalities where the Islamic party barely wins than in municipalities where
the party barely loses the election. By definition, the sample of municipali-
ties near the cutoff comprises constituencies where the Islamic party is very
competitive. It is likely that the political preferences and religious affiliation of
Turkish citizens in these municipalities differ systematically from those in mu-
nicipalities where the Islamic party wins or loses by very large margins. This
means that, although the RD results indicate that Islamic mayors lead to an in-
crease in the educational attainment of women in competitive municipalities,
it is not possible to know whether the same positive effect in female education
would be seen if a mayor from the Islamic party governed a municipality with
strong preferences for secular political parties. Figure 3 reveals that the vast
majority of observations in the sample of 1994 Turkish mayoral elections is
composed of municipalities where the Islamic party lost by a very large mar-
gin; without further assumptions, the RD effect is not informative about the
educational effect of an Islamic party victory in these municipalities.

In general, the degree of representativeness or external validity of the RD
treatment effect will depend on the specific application under consideration.
For example, in the hypothetical scenario illustrated in Figure 4(a), the vertical
distance between E[Yi (1) |Xi = x] and E[Yi (0) |Xi = x] at x = c is consider-
ably higher than at other points, but the effect is positive everywhere. A much
more heterogeneous hypothetical scenario is shown in Figure 4(b), where the
effect is zero at the cutoff but ranges from positive to negative at other points.
Since the counterfactual (dotted) regression functions are never observed in
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Figure 4 Local Nature of the RD Effect
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real examples, it is not possible to know with certainty the degree of external
validity of any given RD application.

Increasing the external validity of RD estimates and estimands is a topic
of active research and, regardless of the approach taken, necessarily requires
more assumptions. For example, extrapolation of RD treatment effects can be
done by imposing additional assumptions about (i) the regression functions
near the cutoff (Wing and Cook, 2013; Dong and Lewbel, 2015), (ii) local inde-
pendence assumptions (Angrist and Rokkanen, 2015) (iii) exploiting specific
features of the design such as imperfect compliance (Bertanha and Imbens,
2019), or (iv) the presence of multiple cutoffs (Cattaneo, Keele, Titiunik, and
Vazquez-Bare, 2016; Cattaneo, Keele, Titiunik, and Vazquez-Bare, 2019). On
this regard, RD designs are not different from randomized experiments: they
both require additional assumptions to map internally valid estimates into ex-
ternally valid ones.

2.3 Further Reading

For an introduction to causal inference based on potential outcomes see Im-
bens and Rubin (2015) and references therein. For a review on causal infer-
ence and program evaluation methods see Abadie and Cattaneo (2018) and
references therein. The RD design was originally proposed by Thistlethwaite
and Campbell (1960), and historical as well as early review articles are given
by Cook (2008), Imbens and Lemieux (2008), and Lee and Lemieux (2010).
Lee (2008) provided an influential contribution to the identification of RD ef-
fects; Lee (2008) and Pettersson-Lidbom (2008) were the first to apply the
RD design to close elections. The edited volume by Cattaneo and Escanciano
(2017) provides a recent overview of the RD literature and includes several
recent methodological and practical contributions.

3 RD Plots
An appealing feature of the RD design is that it can be illustrated graphically.
This graphical representation, in combination with the formal approaches to
estimation, inference, and falsification discussed below, adds transparency to
the analysis by displaying the observations used for estimation and inference.
RD plots also allow researchers to readily summarize the main empirical find-
ings as well as other important features of the work conducted. We now dis-
cuss the most transparent and effective methods to graphically illustrate the RD
design.

At first glance, it seems that one should be able to illustrate the relationship
between the outcome and the running variable by simply constructing a scatter
plot of the observed outcome against the score, clearly identifying the points
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above and below the cutoff. However, this strategy is rarely useful, as it is often
hard to see “jumps” or discontinuities in the outcome – score relationship by
simply looking at the raw data. We illustrate this point with the Meyersson
application, plotting the educational attainment of women against the Islamic
vote margin using the raw observations. We create this scatter plot in R with
the plot command.

R Snippet 1

> plot(X, Y, xlab = "Score", ylab = "Outcome", col = 1, pch = 20,

+ cex.axis = 1.5, cex.lab = 1.5)

> abline(v = 0)

Stata Snippet 1

. twoway (scatter Y X, ///

> mcolor(black) xline(0, lcolor(black))), ///

> graphregion(color(white)) ytitle(Outcome) ///

> xtitle(Score)

Each point in Figure 5 corresponds to one raw municipality-level observa-
tion in the dataset, so there are 2,629 points in the scatter plot (see Table 1).
Although this plot is helpful to visualize the raw observations, detect outliers,
etc., its effectiveness for visualizing the RD design is limited. In this applica-
tion, there is empirical evidence that the Islamic party’s victory translates into
a small increase in women’s educational attainment. Despite this evidence of a
positive RD effect, a jump in the values of the outcome at the cutoff cannot be
seen by simply looking at the raw cloud of points around the cutoff in Figure 5.
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Figure 5 Scatter Plot (Meyersson Data)
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In general, raw scatter plots do not allow for easy visualization of the RD effect
even when the effect is large.

A more useful approach is to aggregate or “smooth” the data before plot-
ting. The typical RD plot presents two summaries: (i) a global polynomial fit,
represented by a solid line, and (ii) local sample means, represented by dots.
The global polynomial fit is simply a smooth approximation to the unknown
regression functions based on a fourth- or fifth-order polynomial regression
fit of the outcome on the score, fitted separately above and below the cutoff,
and using the original raw data. In contrast, the local sample means are cre-
ated by first choosing disjoint (i.e., non-overlapping) intervals or “bins” of the
score, calculating the mean of the outcome for the observations falling within
each bin, and then plotting the average outcome in each bin against the mid
point of the bin. Local sample means can be interpreted as a non-smooth ap-
proximation to the unknown regression functions. The combination of these
two ingredients in the same plot allows researchers to visualize the global or
overall shape of the regression functions for treated and control observations,
while at the same time retaining enough information about the local behavior
of the data to observe the RD treatment effect and the variability of the data
around the global fit. Note that, in the standard RD plot, the global polynomial
is calculated using the original observations, not the binned observations.

For example, in the Meyersson application, if we use 20 bins of equal length
on each side of the cutoff, we partition the support of the Islamic margin of
victory into 40 disjoint intervals of length 5. Recall that a party’s margin of
victory ranges from −100 to 100, and that the Islamic margin of victory in
the Meyersson data ranges from −100 to 99.051. Table 2 shows the bins and
the corresponding average outcomes in this case, where we denote the bins
by B−,1,B−,2, . . . ,B−,20 (control group) and B+,1,B+,2, . . . ,B+,20 (treatment
group), using the subscripts − and + to indicate, respectively, bins located to
the left and right of the cutoff. In this table, each local sample average is com-
puted as

Ȳ−, j =
1

#{Xi ∈ B−, j }
∑

i:Xi ∈B−, j
Yi and Ȳ+, j =

1
#{Xi ∈ B+, j }

∑

i:Xi ∈B+, j
Yi ,

where j = 1,2, . . . ,20.
In Figure 6, we plot the binned outcome means shown in Table 2 against

the score, adding a fourth-order global polynomial fit estimated separately for
treated and control observations. (Below we show how to create this plot us-
ing the rdplot command.) The global fit reveals that the observed regres-
sion function seems to be non-linear, particularly on the control (left) side. At
the same time, the binned means let us see the local behavior of the average
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Table 2 Partition of Islamic Margin of Victory into 40 Bins of Equal Length
(Meyersson Data)

Average Outcome Number of Group
Bin in Bin Observations Assignment

B−,1 = [−100,−95) Ȳ−,1 = 4.6366 4 Control
B−,2 = [−95,−90) Ȳ−,2 = 10.8942 2 Control

...
...

...
...

B−,19 = [−10,−5) Ȳ−,19 = 12.9518 149 Control
B−,20 = [−5,0) Ȳ−,20 = 13.8267 148 Control

B+,1 = [0,5) Ȳ+,1 = 15.3678 109 Treatment
B+,2 = [5,10) Ȳ+,2 = 13.9640 83 Treatment

...
...

...
...

B+,19 = [90,95) Ȳ+,19 = NA 0 Treatment
B+,20 = [95,100] Ȳ+,20 = 10.0629 1 Treatment
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Figure 6 RD Plot for Meyersson Data Using 40 Bins of Equal Length

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108684606
Downloaded from https://www.cambridge.org/core. IP address: 152.115.89.212, on 22 Nov 2019 at 20:18:44, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108684606
https://www.cambridge.org/core


20 Quantitative and Computational Methods for the Social Sciences

response variable around the global fit. The plot also reveals a positive jump at
the cutoff: the average educational attainment of women seems to be higher in
those municipalities where the Islamic party obtained a barely positive margin
of victory than in those municipalities where the Islamic party barely lost.

The types of information conveyed by Figures 5 and 6 are very different. In
the raw scatter plot in Figure 5, it is difficult to see any systematic pattern, and
there is no visible discontinuity in the average outcome at the cutoff. In con-
trast, when we bin the data and include a global polynomial fit in Figure 6, the
plot now allows us to see a discontinuity at the cutoff and to better understand
the shape of the underlying regression function over the whole support of the
running variable. Binning the data may reveal striking patterns that can remain
hidden in a simple scatter plot. Since binning often leads to drastically differ-
ent patterns from those seen in the raw data, we now discuss how to choose
the type and number of bins in a data-driven, transparent, and (sometimes)
optimal way.

3.1 Choosing the Location of Bins

There are two different types of bins that can be used in the construction of RD
plots: bins that have equal length, as in Table 2, or bins that contain (roughly)
the same number of observations but whose length may differ. We refer to these
two types as evenly-spaced and quantile-spaced bins, respectively.

In order to define the bins more precisely, we assume that the running vari-
able takes values inside the interval [xl , xu]. In the Meyersson application,
xl = −100 and xu = 100. We continue to use the subscripts + and − to denote
treated and control observations, respectively. The bins are constructed sep-
arately for treated and control observations, partitioning the support in non-
overlapping intervals. We use J− and J+ to denote the total number of bins
chosen to the left and right of the cutoff, respectively.

We define the bins generally as follows:

Control Bins: B−, j =
⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

[xl , b−,1) j = 1

[b−, j−1, b−, j ) j = 2, . . . , J− − 1

[b−,J−−1, c) j = J−

Treated Bins: B+, j =
⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

[c, b+,1) j = 1

[b+, j−1, b+, j ) j = 2, . . . , J+ − 1

[b+,J+−1, xu] j = J+,

with b−,0 < b−,1 < · · · < b−,J− and b+,0 < b+,1 < · · · < b+,J+ . In other
words, the union of the control and treated bins, B−,1 ∪ B−,2 ∪ · · · ∪ BJ− ∪
B+,1∪B+,2∪ · · · ∪BJ+ , forms a disjoint partition of the support of the running
variable, [xl , xu], centered at the cutoff c.
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Letting X−, (i) and X+, (i) denote the ith quantiles of the control and treat-
ment subsamples, respectively, and �·	 denote the floor function, we can now
formally define evenly-spaced (ES) and quantile-spaced (QS) bins.

• Evenly-spaced (ES) bins: non-overlapping intervals that partition the entire
support of the running variable, all of the same length within each treatment
assignment status:

b−, j = xl +
j (c − xl )

J−
and b+, j = c +

j (xu − c)
J+

.

Note that all ES bins in the control side have length c−xl
J− and all bins in the

treated side have length xu−c
J+

.
• Quantile-spaced (QS) bins: non-overlapping intervals that partition the en-

tire support of the running variable, all containing (roughly) the same num-
ber of observations within each treatment assignment status:

b−, j = X−, ( � j/J− 	) and b+, j = X+, ( � j/J+ 	) .

Note that the length of QS bins may differ even within treatment assignment
status; the bins will be larger in regions of the support where there are fewer
observations.

In practical terms, the most important difference between ES and QS bins
is the underlying variability of the local mean estimate in every bin. Although
ES bins have equal length, if the observations are not uniformly distributed
on [xl , xu], each bin may contain a different number of observations. In an
RD plot with ES bins, each of the local means represented by a dot may be
computed using a different number of observations and thus may be more
or less precisely calculated than the other local means in the plot, affecting
comparability. For example, Table 2 shows that there are only 4 observations
in [−100,−95], and only 2 observations in [−95,−90]; thus, the variance of
these local mean estimates is very high because they are constructed with very
few observations.

In contrast, QS bins contain approximately the same number of observa-
tions by construction. Moreover, a quantile-spaced RD plot has the advantage
of providing a quick visual representation of the density of observations over
the support of the running variable. For example, if there are very few obser-
vations far from the cutoff, an RD plot with quantile-spaced bins will tend to
be “empty” near the extremes of [xl , xu], and will quickly convey the message
that there are no observations with values of the score near xl or xu .
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We now use the rdplot command to produce different RD plots and illus-
trate the differences between binning strategies, using the binselect option
to choose between ES and QS methods. First, we reproduce the RD plot above,
using 20 evenly-spaced bins on each side via the option nbins.

R Snippet 2

> out = rdplot(Y, X, nbins = c(20, 20), binselect = "es", y.lim = c(0,

+ 25), cex.axis = 1.5, cex.lab = 1.5)

> summary(out)

Call: rdplot

Number of Obs. 2629

Kernel Uniform

Number of Obs. 2314 315

Eff. Number of Obs. 2314 315

Order poly. fit (p) 4 4

BW poly. fit (h) 100.000 99.051

Number of bins scale 1 1

Bins Selected 20 20

Average Bin Length 5.000 4.953

Median Bin Length 5.000 4.953

IMSE-optimal bins 11 7

Mimicking Variance bins 40 75

Relative to IMSE-optimal:

Implied scale 1.818 2.857

WIMSE variance weight 0.143 0.041

WIMSE bias weight 0.857 0.959

Stata Snippet 2

. rdplot Y X, nbins(20 20) binselect(es) ///

> graph_options(graphregion(color(white)) ///

> xtitle(Score) ytitle(Outcome))

The full output of rdplot includes several descriptive statistics in addition
to the actual plot, which is shown in Figure 7(a). The total number of observa-
tions is shown in the very top row, where we can also see the type of weights
used to plot the observations. We have 2,629 observations in total, which by
default are all given equal or uniform weight, as is indicated by the output
Kernel = Uniform. The rest of the output is divided in two columns, corre-
sponding to observations located to the left or right of the cutoff, respectively.
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(a) 40 Evenly-Spaced Bins (b) 40 Quantile-Spaced Bins

Figure 7 RD Plots (Meyersson Data)

The output shows that there are 2,314 observations to the left of the cutoff,
and 315 to the right, consistent with our descriptive analysis indicating that
the Islamic party lost the majority of these electoral races. The third row in
the top panel indicates that the global polynomial fit used in the RD plot is of
order 4 on both sides of the cutoff. The fourth row indicates the window or
bandwidth h where the global polynomial fit was conducted; the global fit uses
all observations in [c−h,c) on the control side, and all observations in [c,c+h]

on the treated side. By default, all control and treated observations are included
in the control and treated fit, respectively. Since the range of the Islamic margin
of victory is [−100,99.051], the bandwidth on the right is slightly smaller than
100. Finally, the last row in the top panel shows the scale selected, which is an
optional factor by which the chosen number of bins can be multiplied to either
increase or decrease the original choice; by default, this factor is one and no
scaling is performed.

The lower part of the output shows results on the number and type of bins
selected. The top two rows show that we have selected 20 bins to the left of the
cutoff, and 20 bins to the right of the cutoff. On the control side, the length of
each bin is exactly 5 = c−xl

J− =
0−(−100)

20 = 100/20. However, the actual length
of the ES bins to the right of the cutoff is slightly smaller than 5, as the edge of
the support on the treated side is 99.051 instead of 100. The actual length of
the bins to the right of the cutoff is xu−c

J+
= 99.051−0

20 = 99.051/20= 4.9526. We
postpone discussion of the five bottom rows until the next subsection where
we discuss optimal bin number selection.

We now compare this plot to an RD plot that also uses 20 bins on each side,
but with quantile-spaced bins instead of evenly-spaced bins selected by setting
the option binselect = "qs". The resulting plot is shown in Figure 7(b).
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R Snippet 3

> out = rdplot(Y, X, nbins = c(20, 20), binselect = "qs", x.lim = c(-100,

+ 100), y.lim = c(0, 25), cex.axis = 1.5, cex.lab = 1.5)

> summary(out)

Call: rdplot

Number of Obs. 2629

Kernel Uniform

Number of Obs. 2314 315

Eff. Number of Obs. 2314 315

Order poly. fit (p) 4 4

BW poly. fit (h) 100.000 99.051

Number of bins scale 1 1

Bins Selected 20 20

Average Bin Length 4.995 4.957

Median Bin Length 2.950 1.011

IMSE-optimal bins 21 14

Mimicking Variance bins 44 41

Relative to IMSE-optimal:

Implied scale 0.952 1.429

WIMSE variance weight 0.537 0.255

WIMSE bias weight 0.463 0.745

Stata Snippet 3

. rdplot Y X, nbins(20 20) binselect(qs) ///

> graph_options(graphregion(color(white)) ///

> xtitle(Score) ytitle(Outcome))

A comparison of the two RD plots in Figure 7 reveals where the observa-
tions are located. In the evenly-spaced RD plot in Figure 7(a), there are five bins
in the interval [−100,−75] of the running variable. In contrast, in the quantile-
spaced RD plot in Figure 7(b), this interval is entirely contained in the first bin.
The vast difference in the length of QS and ES bins occurs because, as shown
in Table 2, there are very few observations near −100, which leads to local
mean estimates with high variance. This problem is avoided when we choose
QS bins, which ensures that each bin has the same number of observations.

3.2 Choosing the Number of Bins

Once the positioning of the bins has been decided by choosing either QS or ES
bins, the only remaining choice is the total number of bins on either side of the
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cutoff – the quantities J− and J+. Below we discuss two methods to produce
data-driven, automatic RD plots by selecting J− and J+, given a choice of QS
or ES bins.

3.2.1 Integrated Mean Squared Error (IMSE) Method

The first method we discuss selects the values of J− and J+ that minimize an
asymptotic approximation to the integrated mean-squared error (IMSE) of the
local means estimator, that is, the sum of the expansions of the (integrated)
variance and squared bias. If we choose a large number of bins, we have a
small bias because the bins are smaller and the local constant fit is better;
but this reduction in bias comes at a cost, as increasing the number of bins
leads to fewer observations per bin and thus more variability within bin. The
IMSE-optimal J− and J+ are the numbers of bins that balance squared-bias and
variance so that the IMSE is (approximately) minimized.

By construction, choosing an IMSE-optimal number of bins will result in
binned sample means that “trace out” the underlying regression function; this
is useful to assess the overall shape of the regression function, perhaps to
identify potential discontinuities in these functions that occur far from the
cutoff. However, the IMSE-optimal method often results in a very smooth
plot where the local means nearly overlap with the global polynomial fit, and
may not be appropriate to capture the local variability of the data near the
cutoff.

The IMSE-optimal values of J− and J+ are, respectively,

JIMSE− =
⌈
C IMSE− n1/3

⌉
and JIMSE+ =

⌈
C IMSE
+ n1/3

⌉
,

where n is the total number of observations, 
·� denotes the ceiling operator,
and the exact form of the constants C IMSE− and C IMSE

+ depends on whether ES
or QS bins are used (and some features of the underlying data generating pro-
cess). In practice, the unknown constants C IMSE− and C IMSE

+ are estimated using
preliminary, objective data-driven procedures.

In order to produce an RD plot that uses an IMSE-optimal number of
evenly-spaced bins, we use the command rdplot with the option binselect

= "es", but this time omitting the nbins = c(20 20) option. When the
number of bins is omitted, rdplot automatically chooses the number of bins
according to the criterion specified with binselect. We now produce an RD
plot that uses ES bins and chooses the total number of bins on either side of
the cutoff to be IMSE-optimal.
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R Snippet 4

> out = rdplot(Y, X, binselect = "es", x.lim = c(-100, 100), y.lim = c(0,

+ 25), cex.axis = 1.5, cex.lab = 1.5)

> summary(out)

Call: rdplot

Number of Obs. 2629

Kernel Uniform

Number of Obs. 2314 315

Eff. Number of Obs. 2314 315

Order poly. fit (p) 4 4

BW poly. fit (h) 100.000 99.051

Number of bins scale 1 1

Bins Selected 11 7

Average Bin Length 9.091 14.150

Median Bin Length 9.091 14.150

IMSE-optimal bins 11 7

Mimicking Variance bins 40 75

Relative to IMSE-optimal:

Implied scale 1.000 1.000

WIMSE variance weight 0.500 0.500

WIMSE bias weight 0.500 0.500

Stata Snippet 4

. rdplot Y X, binselect(es) ///

> graph_options(graphregion(color(white)) ///

> xtitle(Score) ytitle(Outcome))

The plot is shown in Figure 8. The output reports both the average and the
median length of the bins. In the ES case, since each bin has the same length,
each bin has length equal to both the average and the median length on each
side. The IMSE criterion leads to different numbers of ES bins above and
below the cutoff. As shown in the Bins Selected row, the IMSE-optimal
number of bins is 11 below the cutoff and 7 above it. As a result, the lengths
of the bins above and below the cutoff are different: above the cutoff, each bin
has a length of 14.150 percentage points, while below the cutoff the bins are
smaller, with a length of 9.091. The middle rows show the optimal number
of bins according to both the IMSE criterion and the mimicking variance
criterion (we discuss the latter in the next subsection). The bottom three rows
show the bias and variance weights implied by the chosen number of bins in
the IMSE objective function. When the IMSE criterion is used, these weights
are always equal to 1/2.
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To produce an RD plot that uses an IMSE-optimal number of quantile-
spaced bins, we use the option binselect = "qs" instead of binselect

= "es".

R Snippet 5

> out = rdplot(Y, X, binselect = "qs", x.lim = c(-100, 100), y.lim = c(0,

+ 25), cex.axis = 1.5, cex.lab = 1.5)

> summary(out)

Call: rdplot

Number of Obs. 2629

Kernel Uniform

Number of Obs. 2314 315

Eff. Number of Obs. 2314 315

Order poly. fit (p) 4 4

BW poly. fit (h) 100.000 99.051

Number of bins scale 1 1

Bins Selected 21 14

Average Bin Length 4.757 7.082

Median Bin Length 2.833 1.429

IMSE-optimal bins 21 14

Mimicking Variance bins 44 41

Relative to IMSE-optimal:

Implied scale 1.000 1.000

WIMSE variance weight 0.500 0.500

WIMSE bias weight 0.500 0.500

Stata Snippet 5

. rdplot Y X, binselect(qs) ///

> graph_options(graphregion(color(white)) ///

> xtitle(Score) ytitle(Outcome))

The resulting plot is shown in Figure 9. Note that the IMSE-optimal number
of QS bins is much larger on both sides, with 21 bins below the cutoff and 14
above it, versus 11 and 7 in the analogous ES plot in Figure 8. The average
bin length is 4.7572 below the cutoff, and 7.0821 above it. As expected, the
median length of the bins is much smaller than the average length on both
sides of the cutoff, particularly above. Since there are very few observations
where the Islamic vote margin is above 50%, the length of the last bin above
the cutoff must be very large in order to ensure that it contains 315/14 ≈ 22

observations.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108684606
Downloaded from https://www.cambridge.org/core. IP address: 152.115.89.212, on 22 Nov 2019 at 20:18:44, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108684606
https://www.cambridge.org/core


28 Quantitative and Computational Methods for the Social Sciences

−100 −50 0 50 100

0
5

10
15

20
25

Score

O
ut

co
m

e

Figure 8 IMSE RD Plot with Evenly-Spaced Bins (Meyersson Data)
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Figure 9 IMSE RD Plot with Quantile-Spaced Bins (Meyersson Data)

3.2.2 Mimicking Variance Method

The second method to select the number of bins chooses the vales of J− and
J+ so that the binned means have an asymptotic (integrated) variability that
is approximately equal to the variability of the raw data. In other words, the
number of bins is chosen so that the overall variability of the binned means
“mimics” the overall variability in the raw scatter plot of the data. In the Mey-
ersson application, this method involves choosing J− and J+ so that the binned
means have a total variability approximately equal to the variability illustrated
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in Figure 5. We refer to this choice of total number of bins as a mimicking
variance (MV) choice.

The mimicking variance values of J− and J+ are

JMV− =
⌈

C MV−
n

log(n)2

⌉

, and JMV+ =

⌈

C MV
+

n

log(n)2

⌉

,

where again n is the sample size and the exact form of the constants C MV− and
C MV
+ depends on whether ES or QS bins are used (and some features of the

underlying data generating process). These constants are different from those
appearing in the IMSE-optimal choices and, in practice, are also estimated
using preliminary, objective data-driven procedures.

In general, JMV− > JES− and JMV+ > JES+ . That is, the MV method leads to a
larger number of bins than the IMSE method, resulting in an RD plot with more
dots representing local means and thus giving a better sense of the variability
of the data. In order to produce an RD plot with ES bins and an MV total
number of bins on either side, we use the option binselect ="esmv".

R Snippet 6

> out = rdplot(Y, X, binselect = "esmv", cex.axis = 1.5, cex.lab = 1.5)

> summary(out)

Call: rdplot

Number of Obs. 2629

Kernel Uniform

Number of Obs. 2314 315

Eff. Number of Obs. 2314 315

Order poly. fit (p) 4 4

BW poly. fit (h) 100.000 99.051

Number of bins scale 1 1

Bins Selected 40 75

Average Bin Length 2.500 1.321

Median Bin Length 2.500 1.321

IMSE-optimal bins 11 7

Mimicking Variance bins 40 75

Relative to IMSE-optimal:

Implied scale 3.636 10.714

WIMSE variance weight 0.020 0.001

WIMSE bias weight 0.980 0.999

Stata Snippet 6

. rdplot Y X, binselect(esmv) ///

> graph_options(graphregion(color(white)) ///

> xtitle(Score) ytitle(Outcome))
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Figure 10 Mimicking Variance RD Plot with Evenly-Spaced Bins
(Meyersson Data)

As shown in the output and illustrated in Figure 10, this produces a much
higher number of bins than we obtained with the IMSE criterion for both ES
and QS bins. The MV total number of bins is 40 below the cutoff and 75 above
the cutoff, with length 2.5 and 1.321, respectively. The difference in the chosen
number of bins between the IMSE and the MV criteria is dramatic. The middle
rows show the number of bins that would have been produced according to
the IMSE criterion (11 and 7) and the number of bins that would have been
produced according to the MV criterion (40 and 75). This allows for a quick
comparison between both methods. Finally, the bottom rows indicate that the
chosen number of MV bins on both sides of the cutoff is equivalent to the
number of bins that would have been chosen according to an IMSE criterion
where, instead of giving the bias and the variance each a weight of 1/2, these
weights had been, respectively, 0.020 and 0.980 below the cutoff, and 0.001
and 0.999 above the cutoff. Thus, we see that if we want to justify the MV
choice in terms of the IMSE criterion, we must weigh the bias much more than
the variance.

Finally, to create an RD plot that chooses the total number of bins accord-
ing to the MV criterion but uses QS bins, we use the option binselect =

"qsmv".
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R Snippet 7

> out = rdplot(Y, X, binselect = "qsmv", x.lim = c(-100, 100),

+ y.lim = c(0, 25), cex.axis = 1.5, cex.lab = 1.5)

> summary(out)

Call: rdplot

Number of Obs. 2629

Kernel Uniform

Number of Obs. 2314 315

Eff. Number of Obs. 2314 315

Order poly. fit (p) 4 4

BW poly. fit (h) 100.000 99.051

Number of bins scale 1 1

Bins Selected 44 41

Average Bin Length 2.270 2.418

Median Bin Length 1.376 0.506

IMSE-optimal bins 21 14

Mimicking Variance bins 44 41

Relative to IMSE-optimal:

Implied scale 2.095 2.929

WIMSE variance weight 0.098 0.038

WIMSE bias weight 0.902 0.962

Stata Snippet 7

. rdplot Y X, binselect(qsmv) ///

> graph_options(graphregion(color(white)) ///

> xtitle(Score) ytitle(Outcome))

The resulting plot is shown in Figure 11. Below the cutoff, the MV number
of QS bins is very similar to the MV choice for ES bins (44 versus 40). How-
ever, above the cutoff, the MV number of QS bins is much lower than the MV
number of ES bins (41 versus 75). This occurs because, although the range of
the running variable is [−100,99.051], there are very few observations in the
intervals [−100,−50] and [50,100] far from the cutoff. Since ES bins force the
length of the bins to be the same everywhere in the support, the number of ES
bins has to be large in order to produce small enough bins to adequately mimic
the overall variability of the scatter plot in regions with few observations. In
contrast, QS bins can be short near the cutoff and long away from the cutoff,
so they can mimic the overall variability by adapting their length to the density
of the data.
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Figure 11 Mimicking Variance RD Plot with Quantile-Spaced Bins
(Meyersson Data)

In sum, bins can be chosen in many different ways. Which method of
implementation is most appropriate depends on the researcher’s particular
goal, for example, illustrating/testing for the overall functional form versus
showing the variability of the data. We recommend to start with MV bins to
better illustrate the variability of the outcome as a function of the score, ideally
comparing ES to QS bins to highlight the distributional features of the score.
Then, if needed, the researcher can select the number of bins to be IMSE-
optimal in order to explore the global features of the regression function.

3.3 Further Reading

A detailed discussion of RD plots and formal methods for automatic data-
driven bin selection are given by Calonico, Cattaneo, and Titiunik (2015a).
This paper formalized the commonly used RD plots with evenly-spaced bin-
ning, introduced RD plots with quantile-spaced binning, and developed opti-
mal choices for the number of bins in terms of both integrated mean-squared
error and mimicking variance targets. See also Calonico, Cattaneo, Farrell,
and Titiunik (2017) for other features of RD plots, including confidence in-
tervals for the local means in each bin. RD plots are special cases of non-
parametric partitioning estimators – see Cattaneo and Farrell (2013), Catta-
neo, Farrell, and Feng (2019), and references therein. Finally, see Cattaneo,
Crump, Farrell, and Feng (2019) for closely related binscatter methods.
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4 The Continuity-Based Approach to RD Analysis
We now discuss empirical methods for estimation and inference in RD de-
signs, based on continuity assumptions and extrapolation towards the cutoff
point, which rely on large-sample approximations with random potential out-
comes under repeated sampling. These methods offer tools useful not only for
the analysis of main treatment effects, but also for falsification and validation
of the design, which we discuss in Section 5. The approach discussed here is
based on formal statistical methods and hence leads to disciplined and objec-
tive empirical analysis, which typically has two related but distinct goals: point
estimation of RD treatment effect (i.e., give a scalar estimate of the vertical
distance between the regression functions at the cutoff), and statistical infer-
ence about the RD treatment effect (i.e., construct valid statistical hypothesis
tests and confidence intervals).

The methods discussed in this section are based on the continuity conditions
underlying Equation (2.1), and generalizations thereof. This framework for RD
analysis, which we call the continuity-based RD framework, uses methodologi-
cal tools that directly rely on continuity (and differentiability) assumptions and
define τSRD as the parameter of interest. In this framework, estimation typically
proceeds by using (local to the cutoff) polynomial methods to approximate
the regression function E[Yi |Xi = x] on each side of the cutoff separately. In
practical terms, this involves using least-squares methods to fit a polynomial
of the observed outcome on the score. When all the observations are used for
estimation, these polynomial fits are global or parametric in nature, like those
used in the default RD plots discussed in the previous section. In contrast,
when estimation employs only observations with scores near the cutoff, the
polynomial fits are local, “flexible,” or “non-parametric.” Our upcoming dis-
cussion focuses exclusively on local polynomial methods, which are by now
the standard framework for RD empirical analysis because they offer a good
compromise between flexibility and simplicity.

In the second Element (A Practical Introduction to Regression Disconti-

nuity Designs: Extensions; Cattaneo, Idrobo, and Titiunik, forthcoming), we
discuss an alternative framework for RD analysis that relies on assumptions of
local random assignment of the treatment near the cutoff, and employs tools
and ideas from the literature on the analysis of experiments. This alternative
approach offers a complement to, and a robustness check for, the local polyno-
mial methods based on continuity assumptions that we discuss in the remain-
der of this Element. Furthermore, the local randomization RD approach can be
used in cases where local polynomial methods are invalid or difficult to justify.
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4.1 Local Polynomial Approach: Overview

A fundamental feature of the RD design is that, in general, there are no obser-
vations for which the score Xi is exactly equal to the cutoff value c: because the
running variable is assumed continuous, there are no (or sometimes in practice
very few) observations whose score is c or very nearly so. Thus, local extrap-
olation in RD designs is unavoidable in general. In other words, in order to
form estimates of the average control response at the cutoff, E[Yi (0) |Xi = c],
and of the average treatment response at the cutoff, E[Yi (1) |Xi = c], we must
rely on observations further away from the cutoff. In the Sharp RD design,
for example, the treatment effect τSRD is the vertical distance between the
E[Yi (1) |Xi = x] and E[Yi (0) |Xi = x] at x = c, as shown in Figure 2, and
thus estimation and inference proceed by first approximating these unknown
regression functions, and then computing the estimated treatment effect and/or
the statistical inference procedure of interest. In this context, the key practi-
cal issue in RD analysis is how the approximation of the unknown regression
functions is done, as this will directly affect the robustness and credibility of
the empirical findings.

The problem of approximating an unknown function is well understood: any
sufficiently smooth function can be well approximated by a polynomial func-
tion, locally or globally, up to an error term. A large literature in statistics has
used this principle to develop non-parametric methods based on polynomials
or other bases of approximation, relaxing strong parametric assumptions and
relying instead on more flexible approximations of the unknown regression
function. Applied to the RD point estimation problem, this principle suggests
that the unknown regression functions E[Yi (0) |Xi = x] and E[Yi (1) |Xi = x]

can be approximated by a polynomial function of the score. The available sta-
tistical results have to be adapted to the RD case, considering the complica-
tions that arise because the approximation must occur at the cutoff, which is a
boundary point.

Early empirical work employed the idea of polynomial approximation glob-
ally, that is, tried to approximate these functions using flexible higher-order
polynomials, usually of fourth or fifth order, over the entire support of the
data. This global approach is still used in RD plots, as illustrated in the previ-
ous section, because the goal there is to illustrate the entire unknown regression
functions. However, it is now widely recognized that a global polynomial ap-
proach does not deliver point estimators and inference procedures with good
properties for the RD treatment effect, the main object of interest. The reason
is that global polynomial approximations tend to deliver a good approximation
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overall, but a poor approximation at boundary points – a problem known as
Runge’s phenomenon in approximation theory. Moreover, global approxima-
tions can induce counter-intuitive weighting schemes, for example, when the
point estimator is heavily influenced by observations far from the boundary.
Since the RD point estimator is defined at a boundary point, global polynomial
methods can lead to unreliable RD point estimators, and thus the conclusions
from a global parametric RD analysis can be highly misleading. For these rea-
sons, we recommend against using global polynomial methods for formal RD
analysis.

Modern RD empirical work employs local polynomial methods, which fo-
cus on approximating the regression functions only near the cutoff. Because
this approach localizes the polynomial fit to the cutoff (discarding observa-
tions sufficiently far away) and employs a low-order polynomial approximation
(usually linear or quadratic), it is substantially more robust and less sensitive to
boundary and overfitting problems. Furthermore, this approach can be viewed
formally as a non-parametric local polynomial approximation, which has also
aided the development of a comprehensive toolkit of statistical and economet-
ric results for estimation and inference. In contrast to global higher-order poly-
nomials, local lower-order polynomial approximations can be viewed as intu-
itive approximations with a potential misspecification of the functional form of
the regression function near the cutoff, which can be modeled and understood
formally, with the advantage that they are less sensitive to outliers or other ex-
treme features of the data generating process far from the cutoff. Local poly-
nomial methods employ only observations close to the cutoff, and interpret
the polynomial used as a local approximation, not necessarily as a correctly
specified model.

The statistical properties of local polynomial estimation and inference de-
pend crucially on the accuracy of the approximation near the cutoff, which is
controlled by the size of the neighborhood around the cutoff where the local
polynomial is fit. In the upcoming sections, we discuss the modern local poly-
nomial methods for RD analysis, and explain all the steps involved in their
implementation for both estimation and inference. We also discuss several ex-
tensions and modifications, including the inclusion of predetermined covari-
ates and the use of cluster-robust standard errors.

4.2 Local Polynomial Point Estimation

Local polynomial methods implement linear regression fits using only obser-
vations near the cutoff point, separately for control and treatment units. Specif-
ically, this approach uses only observations that are between c − h and c + h,
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where h > 0 is a so-called bandwidth that determines the size of the neighbor-
hood around the cutoff where the empirical RD analysis is conducted. Within
this bandwidth, it is common to adopt a weighting scheme to ensure that the ob-
servations closer to c receive more weight than those further away; the weights
are determined by a kernel function K (·). The local polynomial approach can
be understood and analyzed formally as non-parametric, in which case the fit
is taken as an approximation to the unknown underlying regression functions
within the region determined by the bandwidth.

Local polynomial estimation consists of the following basic steps.

1. Choose a polynomial order p and a kernel function K (·).
2. Choose a bandwidth h.
3. For observations above the cutoff (i.e., observations with Xi ≥ c), fit a

weighted least-squares regression of the outcome Yi on a constant and
(Xi − c), (Xi − c)2, . . . , (Xi − c)p , where p is the chosen polynomial
order, with weight K ( Xi−c

h ) for each observation. The estimated inter-
cept from this local weighted regression, μ̂+, is an estimate of the point
μ+ = E[Yi (1) |Xi = c]:

μ̂+ : Ŷi = μ̂+ + μ̂+,1(Xi − c) + μ̂+,2(Xi − c)2 + · · · + μ̂+,p (Xi − c)p .

4. For observations below the cutoff (i.e., observations with Xi < c), fit a
weighted least-squares regression of the outcome Yi on a constant and (Xi −
c), (Xi − c)2, . . . , (Xi − c)p , where p is the chosen polynomial order, with
weight K ( Xi−c

h ) for each observation. The estimated intercept from this
local weighted regression, μ̂−, is an estimate of the point μ− = E[Yi (0)

|Xi = c]:

μ̂− : Ŷi = μ̂− + μ̂−,1(Xi − c) + μ̂−,2(Xi − c)2 + · · · + μ̂−,p (Xi − c)p .

5. Calculate the Sharp RD point estimate: τ̂SRD = μ̂+ − μ̂−.

A graphical representation of local polynomial RD point estimation is given
in Figure 12, where a polynomial of order one (p = 1) is fit within bandwidth
h1; observations outside this bandwidth are not used in the estimation. The RD
effect is τSRD = μ+ − μ− and the local polynomial estimator of this effect is
μ̂+ − μ̂−. Local polynomial methods produce the fit employing the raw data,
not the binned data typically reported in the RD plots.

The implementation of the local polynomial approach thus requires the
choice of three main ingredients: the kernel function K (·), the order of the
polynomial p, and the bandwidth h. We now turn to a discussion of each of
these choices.
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Figure 12 RD Estimation with Local Polynomial

4.2.1 Choice of Kernel Function and Polynomial Order

The kernel function K (·) assigns non-negative weights to each transformed
observation Xi−c

h , based on the distance between the observation’s score Xi

and the cutoff c. The recommended choice is the triangular kernel function,
K (u) = (1 − |u|)1(|u| ≤ 1), because when used in conjunction with a band-
width that optimizes the mean squared error (MSE), it leads to a point estima-
tor with optimal properties (more details about MSE-optimal bandwidths are
given below). As illustrated in Figure 13, the triangular kernel function assigns
zero weight to all observations with score outside the interval [c−h,c+h], and
positive weights to all observations within this interval. The weight is maxi-
mized at Xi = c, and declines symmetrically and linearly as the value of the
score gets farther from the cutoff.

Despite the desirable asymptotic optimality properties of the triangular
kernel, researchers sometimes prefer to use the more simple uniform kernel
K (u) = 1(|u| ≤ 1), which also gives zero weight to observations with score
outside [c − h,c + h], but equal weight to all observations whose scores are
within this interval, see Figure 13. Employing a local linear estimation with
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Figure 13 Different Kernel Weights for RD Estimation

bandwidth h and uniform kernel is therefore equivalent to estimating a simple
linear regression without weights using only observations whose distance from
the cutoff is at most h. A uniform kernel minimizes the asymptotic variance
of the local polynomial estimator under some technical conditions. A third
weighting scheme sometimes encountered in practice is the Epanechnikov ker-
nel, K (u) = (1 − u2)1(|u| ≤ 1), also depicted in Figure 13, which gives a
quadratic decaying weight to observations with Xi ∈ [c − h,c + h] and zero
weight to the rest. In practice, estimation and inference results are typically not
very sensitive to the particular choice of kernel used.

A more consequential decision is the choice of the local polynomial order,
which must consider various factors. First, a polynomial of order zero – a con-
stant fit – has undesirable theoretical properties at boundary points, which is
precisely where RD estimation must occur. Second, for a given bandwidth, in-
creasing the order of the polynomial generally improves the accuracy of the ap-
proximation but also increases the variability of the treatment effect estimator.
Third, as mentioned above, higher-order polynomials tend to produce overfit-
ting of the data and lead to unreliable results near boundary points. Combined,
these factors have led researchers to prefer the local linear RD estimator, which
by now is the default point estimator in most applications. In finite samples, of
course, the ranking between different local polynomial estimators may be dif-
ferent, but in general the local linear estimator seems to deliver a good trade-
off between simplicity, precision, and stability in RD settings.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108684606
Downloaded from https://www.cambridge.org/core. IP address: 152.115.89.212, on 22 Nov 2019 at 20:18:44, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108684606
https://www.cambridge.org/core


A Practical Introduction to RD Designs 39

Cutoff

τSRD

d

c

a

b

c − h2 c − h1 c + h1 c + h2c
Score (X)

E
[Y

(1
)|

X
], 

E
[Y

(0
)|

X
]

Local linear approximation (p = 1)

E[Y(0)|X]
E[Y(1)|X]

a = μ+ (h1)^

b = μ– (h1)^

c = μ+ (h2)^

d = μ– (h2)^

Figure 14 Bias in Local Approximations

Although it may seem at first that a linear polynomial is not flexible enough,
an appropriately chosen bandwidth will adjust to the chosen polynomial order
so that the linear approximation to the unknown regression functions is reli-
able. We turn to this issue below.

4.2.2 Bandwidth Selection and Implementation

The bandwidth h controls the width of the neighborhood around the cutoff that
is used to fit the local polynomial that approximates the unknown regression
functions. The choice of h is fundamental for the analysis and interpretation
of RD designs, as h directly affects the properties of local polynomial estima-
tion and inference procedures, and empirical findings are often sensitive to its
particular value.

Figure 14 illustrates how the error in the approximation is directly related
to the bandwidth choice. The unknown regression functions in the figure,
E[Yi (1) |Xi = x] and E[Yi (0) |Xi = x], have considerable curvature. At first,
it would seem inappropriate to approximate these functions with a linear poly-
nomial. Indeed, inside the interval [c − h2,c + h2], a linear approximation
yields an estimated RD effect equal to μ̂+(h2) − μ̂−(h2) (distance between
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points c and d), which is considerably different from the true effect τSRD. Thus,
a linear fit within bandwidth h2 results in a poor approximation because of
misspecification error. However, reducing the bandwidth from h2 to h1 im-
proves the linear approximation considerably, as now the estimated RD effect
μ̂+(h1) − μ̂−(h1) (distance between points a and b) is much closer to the pop-
ulation treatment effect τSRD. The reason is that the regression functions are
nearly linear in the interval [c − h1,c + h1], and therefore the linear approxi-
mation results in a smaller misspecification error when the bandwidth shrinks
from h2 to h1. This illustrates the general principle that, given a polynomial
order, the accuracy of the approximation can always be improved by reducing
the bandwidth.

Choosing a smaller h will reduce the misspecification error (also known
as “smoothing bias”) of the local polynomial approximation, but will simul-
taneously tend to increase the variance of the estimated coefficients because
fewer observations will be available for estimation. On the other hand, a larger
h will result in more smoothing bias if the unknown function differs consid-
erably from the polynomial model used for approximation, but will reduce the
variance because the number of observations in the interval [c − h,c + h] will
be larger. For this reason, the choice of bandwidth is said to involve a “bias-
variance trade-off.”

Since RD empirical results are often sensitive to the choice of bandwidth, it
is important to select h in a data-driven, automatic way to avoid specification
searching and ad hoc decisions. Most bandwidth selection methods try to bal-
ance some form of bias-variance trade-off (sometimes involving other features
of the estimator, inference procedure, and data generating process). The most
popular approach in practice seeks to minimize the MSE of the local polyno-
mial RD point estimator, τ̂SRD, given a choice of polynomial order and kernel
function. Since the MSE of an estimator is the sum of its squared bias and its
variance, this approach effectively chooses h to optimize a bias-variance trade-
off. The precise procedure involves deriving an asymptotic approximation to
the MSE of τ̂SRD, optimizing it with respect to h, and using data-driven methods
to estimate the unknown quantities in the resulting formula of the optimal h.

The general form of the approximate (conditional) MSE for the RD treat-
ment effect is

MSE(τ̂SRD) = Bias2(τ̂SRD) + Variance(τ̂SRD) = B2 + V ,

where the approximate (conditional) bias and variance of the estimator are

B = h2(p+1) B and V =
1

nh
V ,
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respectively. The quantities B andV represent, respectively, the (leading) bias
and variance of the RD point estimator τ̂SRD, not including the rates controlled
by the sample size and bandwidth choice. Although we omit the technical de-
tails, we present the general form of B and V to clarify the most important
trade-offs involved in the choice of an MSE-optimal bandwidth for the local
polynomial RD estimate, and because these quantities will be used for infer-
ence below.

The general form of the bias B is determined by the bandwidth h2(p+1) and
the quantities

B = B+ − B−, B− ≈ μ(p+1)
− B−, B+ ≈ μ(p+1)

+ B+,

where the derivatives

μ
(p+1)
+ = lim

x↓c
dp+1

E[Yi (1) |X = x]

dxp+1
and μ

(p+1)
− = lim

x↑c
dp+1

E[Yi (0) |X = x]

dxp+1

are related to the “curvature” of the unknown regression functions for treat-
ment and control units, respectively, and the known constants B+ and B− are
related to the kernel function and the order of the polynomial used. These cal-
culations assume a common bandwidth h, but the expressions can be extended
to allow for different bandwidths on the left and right of the cutoff.

The bias term B associated with the local polynomial RD point estimator
of order p, τ̂SRD, depends on the (p + 1)th derivatives of the regression func-
tions E[Yi (1) |X = x] and E[Yi (0) |X = x] with respect to the running variable.
This is a more formal characterization of the phenomenon we illustrated in Fig-
ure 14. When we approximate E[Yi (1) |X = x] and E[Yi (0) |X = x] with a local
polynomial of order p, that approximation has an error (unless E[Yi (1) |X = x]

and E[Yi (0) |X = x] happen to be polynomials of at most order p). The leading
term of the approximation error is related to the derivative of order p+1, that is,
the order following the polynomial order used to estimate τSRD. For example, as
illustrated in Figure 14, if we use a local linear polynomial to estimate τSRD, our
approximation by construction ignores the second-order term (which depends
on the second derivative of the function), and all higher-order terms (which de-
pend on the higher-order derivatives). Thus, the leading bias associated with a
local linear estimator depends on the second derivatives of the regression func-
tions, which are the leading terms in the error of approximation incurred when
we set p = 1. Similarly, if we use a local quadratic polynomial to estimate τ̂SRD,
the leading bias will depend on the third derivatives of the regression function.

The variance term V depends on the sample size and bandwidth through
the expression 1

nh and also involves the quantities

V = V− +V+, V− ≈ σ
2−

f
V−, V+ ≈ σ

2
+

f
V+,
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where

σ2
+ = lim

x↓c
V[Yi (1) |Xi = x] and σ2− = lim

x↑c
V[Yi (0) |Xi = x]

capture the conditional variability of the outcome given the score at the cutoff
for treatment and control units, respectively, f denotes the density of the score
variable at the cutoff, and the known constants V− and V+ are related to the
kernel function and the order of the polynomial used.

As the number of observations near the cutoff decreases (e.g., as the den-
sity f decreases), the contribution of the variance term to the MSE increases,
and vice versa as the number of observations near the cutoff increases. This
captures the intuition that the variability of the RD point estimator will partly
depend on the density of observations near the cutoff. Similarly, an increase
(decrease) in the conditional variability of the outcome given the score will
increase (decrease) the MSE of the RD point estimators.

In order to obtain an MSE-optimal point estimator τ̂SRD, we choose the band-
width that minimizes the MSE approximation:

min
h>0

(
h2(p+1) B2 +

1
nh
V
)
,

which leads to the MSE-optimal bandwidth choice

hMSE =

( V
2(p + 1)B2

)1/(2p+3)

n−1/(2p+3) .

This formula formally incorporates the bias-variance trade-off mentioned
above. It follows that hMSE is proportional to n−1/(2p+3) , and that this MSE-
optimal bandwidth increases with V and decreases with B. In other words, a
larger asymptotic variance will lead to a larger MSE-optimal bandwidth; this
is intuitive, as a larger bandwidth will include more observations in the estima-
tion and thus reduce the variance of the resulting point estimator. In contrast, a
larger asymptotic bias will lead to a smaller bandwidth, as a smaller bandwidth
will reduce the approximation error and reduce the bias of the resulting point
estimator.

Another way to see this trade-off is to note that if we chose a bandwidth
h > hMSE, decreasing h would lead to a reduction in the approximation error
and an increase in the variability of the point estimator, but the MSE reduction
caused by the decrease in bias would be larger than the MSE increase caused by
the variance increase, leading to a smaller MSE overall. In other words, when
h > hMSE, it is possible to reduce the misspecification error without increasing
the MSE. In contrast, when we set h = hMSE, both increasing and decreasing
the bandwidth necessarily lead to a higher MSE.
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Given the quantities V and B, increasing the sample size n leads to a
smaller optimal hMSE. This is also intuitive: as a larger sample becomes avail-
able, both bias and variance are reduced, because it is possible to reduce the er-
ror in the approximation by reducing the bandwidth without paying a penalty in
added variability (as the larger number of available observations compensates
for the bandwidth reduction).

In some applications, it may be useful to choose different bandwidths on
each side of the cutoff. Since the RD treatment effect τSRD = μ+ − μ− is simply
the difference of two (one-sided) estimates, allowing for two distinct band-
width choices can be accomplished by considering an MSE approximation for
each estimate separately. In other words, two different bandwidths can be se-
lected for μ̂+ and μ̂−, and then used to form the RD treatment effect estimator.
Practically, this is equivalent to choosing an asymmetric neighborhood near the
cutoff of the form [c − h−,c + h+], where h− and h+ denote the control (left)
and treatment (right) bandwidths, respectively. In this case, the MSE-optimal
choices are given by

hMSE,− =

( V−
2(p + 1)B2−

)1/(2p+3)

n−1/(2p+3)
− (4.1)

hMSE,+ =

( V+
2(p + 1)B2

+

)1/(2p+3)

n−1/(2p+3)
+ . (4.2)

These bandwidth choices will be most practically relevant when the bias
and/or variance of the control and treatment groups differ substantially, for
example, because of different curvature of the unknown regression functions,
or different conditional variance of the outcome given the score near the cutoff.

In practice, the optimal bandwidth selectors described above (and variants
thereof) are implemented by constructing preliminary plug-in estimates of the
unknown quantities entering their formulas. For example, given a bandwidth
choice and sample size, the misspecification biases B+ and B− are estimated
by forming preliminary “curvature” estimates μ̂(p+1)

− and μ̂(p+1)
+ , which are

constructed using a local polynomial of order q ≥ p + 1 with bias bandwidth
b, not necessarily equal to h. The resulting estimators take the form

B̂ = h2(p+1) B̂, B̂ = B̂+ − B̂−, B̂+ = μ̂(p+1)
+ B+, B̂− = μ̂(p+1)

− B−,

where the quantities B− and B+ are readily implementable given the informa-
tion available (e.g., data, bandwidth choices, kernel choice, etc.). Similarly, a
variance estimator is

V̂ =
1

nh
V̂ , V̂ = V̂+ + V̂−,
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where the estimators V̂− and V̂+ are usually constructed using plug-in pre-
asymptotic formulas capturing the asymptotic variance of the estimates on the
left and right of the cutoff, respectively. Natural choices are some version of
heteroskedasticity-consistent standard error formulas or modifications thereof
allowing for clustered data, all of which are implemented in the rdrobust

software
Given these ingredients, data-driven MSE-optimal bandwidth selectors are

easily constructed for the RD treatment effect (i.e., one common bandwidth
on both sides of the cutoff) or for each of the two regression function esti-
mators at the cutoff (i.e., two distinct bandwidths). For example, once a pre-
liminary bandwidth choice is available to construct the above estimators, the
MSE-optimal bandwidth choice is

ĥMSE =

( V̂
2(p + 1)B̂2

)1/(2p+3)

n−1/(2p+3) ,

and similarly for ĥMSE,+ and ĥMSE,−.
A potential drawback of the MSE bandwidth selection approach is that in

some applications the estimated biases may be close to zero, leading to poor
behavior of the resulting bandwidth selectors. To handle this computational
issue, it is common to include a “regularization” term R to avoid small denom-
inators in small samples. For example, in the case of a common bandwidth, the
alternative formula is

hMSE =

( V
2(p + 1)B2 + R

)1/(2p+3)

n−1/(2p+3) ,

where the extra term R can be justified theoretically but requires additional pre-
liminary estimators when implemented. Empirically, since R is in the denom-
inator, including a regularization term will always lead to a smaller hMSE. This
idea is also used in the case of hMSE,− and hMSE,+, and other related bandwidth
selection procedures. We discuss how to include and exclude a regularization
term in practice in Section 4.2.4.

4.2.3 Optimal Point Estimation

Given the choice of polynomial order p and kernel function K (·), the local
polynomial RD point estimator τ̂SRD is implemented for a choice of bandwidth
h. Selecting either a common MSE-optimal bandwidth for τ̂SRD = μ̂− − μ̂+,
or two distinct MSE-optimal bandwidths for its ingredients μ̂− and μ̂+, leads
to an RD point estimator that is both consistent and MSE-optimal, in the
sense that it achieves the fastest rate of decay in an MSE sense. Furthermore,
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it can be shown that the triangular kernel is the MSE-optimal choice for
point estimation. Because of these optimality properties, and the fact that
the procedures are data driven and objective, modern RD empirical work
routinely employs some form of automatic MSE-optimal bandwidth selection
with triangular kernel, and reports the resulting MSE-optimal point estimator
of the RD treatment effect.

4.2.4 Point Estimation in Practice

We now return to the Meyersson application to illustrate RD point estima-
tion using local polynomials. First, we use standard least-squares commands to
emphasize that local polynomial point estimation is simply a weighted least-
squares fit.

We start by choosing an ad hoc bandwidth h = 20, postponing the illus-
tration of optimal bandwidth selection until the following section. Within this
arbitrary bandwidth choice, we can construct the local linear RD point estima-
tion with a uniform kernel using standard least-squares routines. As mentioned
above, a uniform kernel simply means that all observations outside [c−h,c+h]

are excluded, and all observations inside this interval are weighted equally.

R Snippet 8

> out = lm(Y[X < 0 & X >= -20] ~ X[X < 0 & X >= -20])

> left_intercept = out$coefficients[1]

> print(left_intercept)

(Intercept)

12.62254

> out = lm(Y[X >= 0 & X <= 20] ~ X[X >= 0 & X <= 20])

> right_intercept = out$coefficients[1]

> print(right_intercept)

(Intercept)

15.54961

> difference = right_intercept - left_intercept

> print(paste("The RD estimator is", difference, sep = " "))

[1] "The RD estimator is 2.92707507543107"

Stata Snippet 8

. reg Y X if X < 0 & X >= -20

. matrix coef_left = e(b)

. local intercept_left = coef_left[1, 2]

. reg Y X if X >= 0 & X <= 20

. matrix coef_right = e(b)

. local intercept_right = coef_right[1, 2]

. local difference = ‘intercept_right’ - ‘intercept_left’

The RD estimator is ‘difference’

The RD estimator is 2.92707507543108
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The results indicate that within this ad hoc bandwidth of 20 percentage
points, the percentage of women aged 15 to 20 who completed high school
increases by about 2.927 percentage points with an Islamic victory: about
15.55% of women in this age group had completed high school by 2000 in
municipalities where the Islamic party barely won the 1994 mayoral elections,
while the analogous percentage in municipalities where the Islamic party was
barely defeated is about 12.62%.

We now show that the same point estimator can be obtained by fitting a
single linear regression that includes an interaction between the treatment in-
dicator and the score – both approaches are algebraically equivalent.

R Snippet 9

> T_X = X * T

> out = lm(Y[X >= -20 & X <= 20] ~ X[X >= -20 & X <= 20] + T[X >=

+ -20 & X <= 20] + T_X[X >= -20 & X <= 20])

> summary(out)

Call:

lm(formula = Y[X >= -20 & X <= 20] ~ X[X >= -20 & X <= 20] +

T[X >= -20 & X <= 20] + T_X[X >= -20 & X <= 20])

Residuals:

Min 1Q Median 3Q Max

-17.373 -7.718 -0.755 6.384 33.697

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.62254 0.77459 16.296 < 2e-16 ***

X[X >= -20 & X <= 20] -0.24807 0.06723 -3.690 0.000238 ***

T[X >= -20 & X <= 20] 2.92708 1.23529 2.370 0.018024 *

T_X[X >= -20 & X <= 20] 0.12612 0.12459 1.012 0.311667

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 9.316 on 884 degrees of freedom

Multiple R-squared: 0.01721, Adjusted R-squared: 0.01387

F-statistic: 5.159 on 3 and 884 DF, p-value: 0.00154

Stata Snippet 9

. gen T_X = X * T

. reg Y X T T_X if X >= -20 & X <= 20

The coefficient on the treatment indicator is 2.92708, the same value we
obtained by subtracting the intercepts in the two separate regressions.

To produce the same point estimation with a triangular kernel instead of a
uniform kernel, we simply use a least-squares routine with weights. First, we
create the weights according to the triangular kernel formula.
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R Snippet 10

> w = NA

> w[X < 0 & X >= -20] = 1 - abs(X[X < 0 & X >= -20]/20)

> w[X >= 0 & X <= 20] = 1 - abs(X[X >= 0 & X <= 20]/20)

Stata Snippet 10

. gen weights = .

. replace weights = (1 - abs(X / 20)) if X < 0 & X >= -20

. replace weights = (1 - abs(X / 20)) if X >= 0 & X <= 20

Then, we use the weights in the least-squares fit.

R Snippet 11

> out = lm(Y[X < 0] ~ X[X < 0], weights = w[X < 0])

> left_intercept = out$coefficients[1]

> out = lm(Y[X >= 0] ~ X[X >= 0], weights = w[X >= 0])

> right_intercept = out$coefficients[1]

> difference = right_intercept - left_intercept

> print(paste("The RD estimator is", difference, sep = " "))

[1] "The RD estimator is 2.93731873078712"

Stata Snippet 11

. reg Y X [aw = weights] if X < 0 & X >= -20

. matrix coef_left = e(b)

. local intercept_left = coef_left[1, 2]

. reg Y X [aw = weights] if X >= 0 & X <= 20

. matrix coef_right = e(b)

. local intercept_right = coef_right[1, 2]

. local difference = ‘intercept_right’ - ‘intercept_left’

The RD estimator is ‘difference’

The RD estimator is 2.9373186846586

Note that, with h and p fixed, changing the kernel from uniform to triangular
alters the point estimator only slightly, from about 2.9271 to 2.9373. This is
typical; point estimates tend to be relatively stable with respect to the choice
of kernel.

Although using standard least-squares estimation routines is useful to clar-
ify the algebraic mechanics behind local polynomial point estimation, the con-
fidence intervals and standard errors provided by these routines will be gener-
ally invalid for our purposes, a point we discuss extensively in the upcoming
sections. Thus, from this point on, we employ the rdrobust software package,
which is specifically tailored to RD designs and includes several functions to
conduct local polynomial bandwidth selection, RD point estimation, and RD
inference using a fully non-parametric and internally coherent methodology.
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To replicate the previous point estimators using the command rdrobust,
we use the options p to set the order of the polynomial, kernel to set the
kernel, and h to choose the bandwidth manually. By default, rdrobust sets
the cutoff value to zero, but this can be changed with the option c. We first
use rdrobust to implement a local linear RD point estimator with h = 20 and
uniform kernel.

R Snippet 12

> out = rdrobust(Y, X, kernel = "uniform", p = 1, h = 20)

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type Manual

Kernel Uniform

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 608 280

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 20.000 20.000

BW bias (b) 20.000 20.000

rho (h/b) 1.000 1.000

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 2.927 1.235 2.371 0.018 [0.507 , 5.347]

Robust - - 1.636 0.102 [-0.582 , 6.471]

=============================================================================

Stata Snippet 12

. rdrobust Y X, kernel(uniform) p(1) h(20)

The output includes many details. The four uppermost rows indicate that
the total number of observations is 2,629, the bandwidth is chosen manually,
and the observations are weighed with a uniform kernel. The final line indi-
cates that the variance-covariance estimator (VCE) is constructed using nearest-
neighbor (NN) estimators instead of sums of squared residuals (this default
behavior can be changed with the option vce); we discuss details on variance
estimation further below in the context of RD inference.

The middle rows resemble the output of rdplot in that they are divided
in two columns that give information separately for the observations above
(Right) and below (Left) the cutoff. The first row shows that the 2,629

observations are split into 2,314 (control) observations below the cutoff,
and 315 (treated) observations above the cutoff. The second row shows the
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effective number of observations that are used for estimation of the RD
effect, that is, the number of observations whose scores are within distance
h from the cutoff, Xi ∈ [c − h,c + h]. The output indicates that there are 608

observations with Xi ∈ [c − h,c), and 280 observations with Xi ∈ [c,c + h].
The third line shows the order of the local polynomial used to estimate the
main RD effect, τSRD, which in this case is equal to p = 1. The bandwidth used
to estimate τSRD is shown on the fifth line, BW est. (h), where we see that
the same bandwidth h = 20 was used to the left and right of the cutoff. We
defer discussion of Order Bias (q), BW bias (b), and rho (h/b) until
we discuss inference methods.

The bottom rows show the estimation results. The RD point estimator, re-
ported in the first row of the Coef. column, is τ̂SRD = 2.927, indicating that in
municipalities where the Islamic party barely won, the educational attainment
of women is roughly 3 percentage points higher than in municipalities where
the party barely lost. As expected, this number is identical to the number we
obtained with the least-squares function lm in R or the command reg in Stata.

The rdrobust routine also allows us to easily estimate the RD effect using
triangular instead of uniform kernel weights.

R Snippet 13

> out = rdrobust(Y, X, kernel = "triangular", p = 1, h = 20)

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type Manual

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 608 280

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 20.000 20.000

BW bias (b) 20.000 20.000

rho (h/b) 1.000 1.000

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 2.937 1.343 2.187 0.029 [0.305 , 5.569]

Robust - - 1.379 0.168 [-1.117 , 6.414]

=============================================================================

Stata Snippet 13

. rdrobust Y X, kernel(triangular) p(1) h(20)
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Once again, this produces the same coefficient of 2.937 that we found when
we used the weighted least-squares command with triangular weights. We post-
pone the discussion of standard errors, confidence intervals, and the distinction
between the Conventional versus Robust results until we discuss inference
methods.

Finally, if we wanted to reduce the approximation error in the estimation
of the RD effect, we could increase the order of the polynomial and use a
local quadratic fit instead of a local linear one. This can be implemented in
rdrobust setting p=2.

R Snippet 14

> out = rdrobust(Y, X, kernel = "triangular", p = 2, h = 20)

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type Manual

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 608 280

Order est. (p) 2 2

Order bias (p) 3 3

BW est. (h) 20.000 20.000

BW bias (b) 20.000 20.000

rho (h/b) 1.000 1.000

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 2.649 1.921 1.379 0.168 [-1.117 , 6.414]

Robust - - 0.420 0.674 [-3.969 , 6.135]

=============================================================================

Stata Snippet 14

. rdrobust Y X, kernel(triangular) p(2) h(20)

Note that the estimated effect changes from 2.937 with p = 1, to 2.649

with p = 2. It is not unusual to observe a change in the point estimate as one
changes the polynomial order used in the estimation. Unless the higher-order
terms in the approximation are exactly zero, incorporating those terms in the
estimation will reduce the approximation error and thus lead to changes in the
estimated effect. The relevant practical question is whether such changes in
the point estimator change the conclusions of the study. For that, we need to
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consider inference as well as estimation procedures, a topic we discuss in the
upcoming sections.

In general, choosing an ad hoc bandwidth (as done in the previous com-
mands) is not advisable. It is unclear what the value h = 20 means in terms of
bias and variance properties, or whether this is the best approach for estima-
tion and inference. The command rdbwselect, which is part of the rdrobust
package, implements optimal, data-driven bandwidth selection methods. We
illustrate the use of rdbwselect by selecting an MSE-optimal bandwidth for
the local linear estimator of τSRD.

R Snippet 15

> out = rdbwselect(Y, X, kernel = "triangular", p = 1, bwselect = "mserd")

> summary(out)

Call: rdbwselect

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Order est. (p) 1 1

Order bias (q) 2 2

=======================================================

BW est. (h) BW bias (b)

Left of c Right of c Left of c Right of c

=======================================================

mserd 17.239 17.239 28.575 28.575

=======================================================

Stata Snippet 15

. rdbwselect Y X, kernel(triangular) p(1) bwselect(mserd)

The MSE-optimal bandwidth choice depends on the choice of polynomial
order and kernel function, which is why both have to be specified in the call to
rdbwselect. The first output line indicates the type of bandwidth selector; in
this case, it is MSE-optimal (mserd). The type of kernel used is also reported,
as is the total number of observations. The middle rows report the number of
observations on each side of the cutoff, and the order of polynomial chosen for
estimation of the RD effect, the Order est. (p) row.

In the bottom rows, we see the estimated optimal bandwidth choices. The
bandwidth h refers to the bandwidth used to estimate the RD effect τSRD; we
sometimes refer to it as the main bandwidth. The bandwidth b is an additional
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bandwidth used to estimate a bias term that is needed for robust inference; we
omit discussion of b until the following sections.

The estimated MSE-optimal bandwidth for the local-linear RD point es-
timator with triangular kernel weights is 17.239. The option bwselect =

"mserd" imposes the same bandwidth h on each side of the cutoff, that is,
uses the neighborhood [c − h,c + h]. This is why the columns Left of c

and Right of c have the same value 17.239. If instead we wish to allow the
bandwidth to be different on each side of the cutoff, we can choose two MSE-
optimal bandwidths by using the bwselect = "msetwo" option. This leads
to a bandwidth of 19.967 on the control side, and a bandwidth of 17.359 on the
treated side, as shown below.

R Snippet 16

> out = rdbwselect(Y, X, kernel = "triangular", p = 1, bwselect = "msetwo")

> summary(out)

Call: rdbwselect

Number of Obs. 2629

BW type msetwo

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Order est. (p) 1 1

Order bias (q) 2 2

=======================================================

BW est. (h) BW bias (b)

Left of c Right of c Left of c Right of c

=======================================================

msetwo 19.967 17.359 32.278 29.728

=======================================================

Stata Snippet 16

. rdbwselect Y X, kernel(triangular) p(1) bwselect(msetwo)

Once we select the MSE-optimal bandwidth(s), we can pass them to the
function rdrobust using the option h. But it is much easier to use the
option bwselect in rdrobust. When we use this option, rdrobust calls
rdbwselect internally, selects the bandwidth as requested, and then uses the
optimally chosen bandwidth to estimate the RD effect.
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We now use the rdrobust command to perform bandwidth selection and
point estimation in one step, using p = 1 and triangular kernel weights.

R Snippet 17

> out = rdrobust(Y, X, kernel = "triangular", p = 1, bwselect = "mserd")

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 529 266

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 17.239 17.239

BW bias (b) 28.575 28.575

rho (h/b) 0.603 0.603

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 3.020 1.427 2.116 0.034 [0.223 , 5.817]

Robust - - 1.776 0.076 [-0.309 , 6.276]

=============================================================================

Stata Snippet 17

. rdrobust Y X, kernel(triangular) p(1) bwselect(mserd)

As we can see, when the same MSE-optimal bandwidth is used on both sides
of the cutoff, the effect of a bare Islamic victory on the educational attainment
of women is 3.020, slightly larger than the 2.937 effect that we found above
when we used the ad hoc bandwidth of 20.

We can also explore the rdrobust output to obtain the estimates of the
average outcome at the cutoff separately for treated and control observations.
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R Snippet 18

> rdout = rdrobust(Y, X, kernel = "triangular", p = 1, bwselect = "mserd")

> print(names(rdout)[1:7])

[1] "Estimate" "bws" "coef" "se" "z" "pv" "ci"

> print(names(rdout)[8:15])

[1] "beta_p_l" "beta_p_r" "V_cl_l" "V_cl_r" "V_rb_l" "V_rb_r" "N" "Nh"

> print(names(rdout)[16:23])

[1] "Nb" "tau_cl" "tau_bc" "c" "p" "q" "bias" "kernel"

> print(names(rdout)[24:27])

[1] "all" "vce" "bwselect" "level"

> print(rdout$beta_p_r)

[,1]

[1,] 15.6649438

[2,] -0.1460846

> print(rdout$beta_p_l)

[,1]

[1,] 12.6454218

[2,] -0.2477231

Stata Snippet 18

. rdrobust Y X

. ereturn list

We see that the RD effect of 3.020 percentage points in the female
high school attainment percentage is the difference between a percentage of
15.6649438% in municipalities where the Islamic party barely wins and a
percentage of 12.6454218% in municipalities where the Islamic party barely
loses, that is, 15.6649438 − 12.6454218 ≈ 3.020. By accessing the control
mean at the cutoff in this way, we learn that the RD effect represents an in-
crease of (3.020/12.6454218) × 100 = 23.88% relative to the control mean.

This effect, together with the means at either side of the cutoff, can be easily
illustrated with rdplot, using the options h, p, and kernel, to set exactly the
same specification used in rdrobust and produce an exact illustration of the
RD effect. We illustrate the commands below, and show the resulting plot in
Figure 15.
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R Snippet 19

> bandwidth = rdrobust(Y, X, kernel = "triangular", p = 1, bwselect = "mserd")$bws[1,

+ 1]

> out = rdplot(Y[abs(X) <= bandwidth], X[abs(X) <= bandwidth],

+ p = 1, kernel = "triangular", cex.axis = 1.5, cex.lab = 1.5)

> summary(out)

Call: rdplot

Number of Obs. 795

Kernel Triangular

Number of Obs. 529 266

Eff. Number of Obs. 528 265

Order poly. fit (p) 1 1

BW poly. fit (h) 17.225 17.048

Number of bins scale 1 1

Bins Selected 19 17

Average Bin Length 0.907 1.003

Median Bin Length 0.907 1.003

IMSE-optimal bins 5 3

Mimicking Variance bins 19 17

Relative to IMSE-optimal:

Implied scale 3.800 5.667

WIMSE variance weight 0.018 0.005

WIMSE bias weight 0.982 0.995

Stata Snippet 19

. rdrobust Y X, p(1) kernel(triangular) bwselect(mserd)

. local bandwidth = e(h_l)

. rdplot Y X if abs(X) <= ‘bandwidth’, p(1) h(‘bandwidth’) kernel(triangular)

Finally, we note that by default, all MSE-optimal bandwidth selectors in
rdrobust include the regularization term that we discussed in subsection
4.2.2. We can exclude the regularization term with the option scaleregul=0

in the rdrobust (or rdbwselect) call.
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Figure 15 Local Polynomial RD Effect Illustrated with rdplot

(Meyersson Data)

R Snippet 20

> out = rdrobust(Y, X, kernel = "triangular", scaleregul = 0, p = 1,

+ bwselect = "mserd")

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 1152 305

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 34.983 34.983

BW bias (b) 46.233 46.233

rho (h/b) 0.757 0.757

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 2.843 1.110 2.562 0.010 [0.668 , 5.018]

Robust - - 2.384 0.017 [0.596 , 6.104]

=============================================================================

Stata Snippet 20

. rdrobust Y X, kernel(triangular) p(1) bwselect(mserd) scaleregul(0)
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In this application, excluding the regularization term has a very large impact
on the estimated hMSE. With regularization, ĥMSE is 17.239, while excluding reg-
ularization increases it to 34.983, an increase of roughly 100%. Nevertheless,
the point estimate remains relatively stable, moving from 3.020 with regular-
ization to 2.843 without regularization.

4.3 Local Polynomial Inference

In addition to providing a local polynomial point estimator of the RD treatment
effect, we are interested in testing hypotheses and constructing confidence in-
tervals. Although, at first glance, it seems that we could employ ordinary least-
squares (OLS) inference methods, these methods would treat the local poly-
nomial regression model as correctly specified (i.e., parametric), and de facto
disregard its fundamental approximation (i.e., non-parametric) nature. Thus,
it would be intellectually and methodologically incoherent to simultaneously
select a bandwidth according to a bias-variance trade-off and then proceed as
if the bias were zero, that is, as if the local polynomial fit were exact and no
misspecification error existed.

These considerations imply that valid inference should take into account
the effect of misspecification. In particular, the MSE-optimal bandwidths dis-
cussed previously (hMSE, hMSE,−, and hMSE,+) result in an RD point estimator
that is both consistent and optimal in an MSE sense, but inferences based on
these bandwidth choices pose a problem. The challenge is that these band-
widths are not “small” enough to remove the leading bias term in the standard
distributional approximations used to conduct statistical inference. The root of
the problem is that these bandwidth choices are developed for point estimation
purposes, and as such they pay no attention to their effects in terms of dis-
tributional properties of typical t-tests or related statistics. Thus, constructing
confidence intervals using standard OLS large-sample results using the data
with Xi ∈ [c − hMSE,c + hMSE] will generally result in invalid inferences.

There are two general approaches that can be used to address this key prob-
lem. One approach is to use the bandwidth hMSE for both estimation and infer-
ence, but modify the usual t-statistic to account for the effects of misspecifi-
cation due to the large bandwidth, as well as for the additional sampling error
introduced by such modification. The other is to use hMSE only for point es-
timation, and then choose a different bandwidth for inference purposes. We
elaborate on these issues next.
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4.3.1 Using the MSE-Optimal Bandwidth for Inference

We first discuss how to make valid inferences when the bandwidth choice is
hMSE (or some data-driven implementation thereof). The local polynomial RD
point estimator τ̂SRD has an approximate large-sample distribution

τ̂SRD − τSRD −B√
V

a
∼ N (0,1)

where B and V are, respectively, the asymptotic bias and variance of the RD
local polynomial estimator of order p, discussed previously in the context of
MSE expansions and bandwidth selection. This distributional result is simi-
lar to those encountered, for example, in standard linear regression problems
– with the important distinction that now the bias term B features explicitly;
this term highlights the trade-off between bandwidth choice and misspecifi-
cation bias locally to the cutoff. The variance term V can be calculated as in
(weighted) least-squares problems, for instance accounting for heteroskedas-
ticity and/or clustered data. We do not provide the exact formulas for variance
estimation, to save space and notation, but they can be found in the references
given at the end of this section and are all implemented in rdrobust.

Given the distributional approximation for the RD local polynomial estima-
tor, an asymptotic 95% confidence interval for τSRD is approximately given by

CI =
[
(τ̂SRD −B) ± 1.96 · √V

]
.

This confidence interval depends on the unknown bias or misspecification er-
ror B, and any practical procedure that ignores it will lead to incorrect in-
ferences unless this term is negligible (i.e., unless the local linear regression
model is close-to-correctly specified). The bias term arises because the local
polynomial approach is a non-parametric approximation: instead of assuming

that the underlying regression functions are pth order polynomials (as would
occur in OLS estimation), this approach uses the polynomial to approximate

the unknown regression functions.
We now discuss different strategies that are often employed to make infer-

ences for τSRD based on asymptotic distributional approximations in the pres-
ence of non-parametric misspecification biases, and explain why some of them
are invalid. Our recommendation is to use a robust bias correction approach,
which is theoretically valid, enjoys some optimality properties, and performs
well in practice.
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Conventional Inference and Undersmoothing
A strategy sometimes found in RD empirical work is to ignore the misspeci-
fication error even when an MSE-optimal bandwidth is used. This is not only
invalid but also methodologically incoherent: an MSE-optimal bandwidth can-
not be selected in the absence of misspecification error (zero bias), and statis-
tical inference based on standard OLS methods (ignoring the bias) cannot be
valid when an MSE-optimal bandwidth is employed.

This naı̈ve approach to statistical inference treats the local polynomial ap-
proach as parametric within the neighborhood around the cutoff and de facto
ignores the bias term, a procedure that leads to invalid inferences in all cases
except when the approximation error is so small that it can be ignored. When
the bias term is zero, the approximate distribution of the RD estimator is(
τ̂SRD − τSRD)/

√
V

a
∼ N (0,1) and the confidence interval is

CIus =
[
τ̂SRD ± 1.96 · √V

]
.

Since this is the same confidence interval that follows from parametric
least-squares estimation, we refer to it as conventional. Using the conven-
tional confidence interval CIus implicitly assumes that the chosen polynomial
gives an exact approximation to the true functions E[Yi (1) |Xi ] and E[Yi (0) |Xi ].
Since these functions are unknown, this assumption is not verifiable and will
rarely be credible. If researchers use CIus when in fact the approximation error
is non-negligible, all inferences will be incorrect, leading to under-coverage of
the true treatment effect or, equivalently, over-rejection of the null hypothesis
of zero treatment effect. For this reason, we strongly discourage researchers
from using conventional inference when using local polynomial methods, un-
less the misspecification bias can credibly be assumed small (ruling out, in
particular, the use of MSE-optimal bandwidth choices).

A theoretically sound but ad hoc alternative procedure is to use these con-
ventional confidence intervals with a smaller or “undersmoothed” bandwidth
relative to the MSE-optimal one used for construction of the point estima-
tor τ̂SRD. Practically, this procedure involves first selecting the MSE-optimal
bandwidth, then selecting a bandwidth smaller than the MSE-optimal choice,
and finally constructing the conventional confidence intervals CIus with this
smaller bandwidth – note that the latter step requires estimating both a new
point estimator and a new standard error with the smaller bandwidth. The
theoretical justification is that, for bandwidths smaller than the MSE-optimal
choice, the bias term will become negligible in the large-sample distributional
approximation. (This is why we use the subscript “us” to refer to the conven-
tional confidence interval.)
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The main drawback of this undersmoothing procedure is that there are no
clear and transparent criteria for shrinking the bandwidth below the MSE-
optimal value: some researchers might estimate the MSE-optimal choice and
divide by two, others may choose to divide by three, etc. Although these pro-
cedures can be justified in a strictly theoretical sense, they are all ad hoc and
can result in lack of transparency and specification searching. Moreover, this
general strategy leads to a loss of statistical power because a smaller bandwidth
results in fewer observations used for estimation and inference. Finally, from a
substantive perspective, some researchers prefer to avoid using different obser-
vations for estimation and inference, which is required by the undersmoothing
approach.

Standard Bias Correction
As an alternative to undersmoothing (i.e., to choosing a bandwidth smaller than
the MSE-optimal bandwidth), inference could be based on the MSE-optimal
bandwidth so long as the induced misspecification error is manually estimated
and removed from the distributional approximation. This approach, known as
bias correction, first estimates the bias term B with the estimator B̂ (which
in fact is already estimated for implementation of MSE-optimal bandwidth
selection), and then constructs confidence intervals that are centered at the
bias-corrected point estimate:

CIbc =
[ (
τ̂SRD − B̂

) ± 1.96 · √V
]
.

As explained above, the bias term depends on the “curvature” of the unknown
regression functions captured via their derivative of order p + 1 at the cutoff.
These unknown derivatives can be estimated with a local polynomial of order
q = p + 1 or higher, which requires another choice of bandwidth, denoted b.
Therefore, the RD point estimate τ̂SRD employs the bandwidth h, while the bias
estimate B̂ employs the additional bandwidth b. The ratio ρ = h/b is impor-
tant, as it relates to the variability of the bias correction estimate relative to the
RD point estimator. Standard bias correction methods require ρ = h/b → 0,
that is, a small ρ. In particular, note this rules out ρ = h/b = 1, that is, standard
bias correction does not allow h = b.

The bias-corrected confidence intervals CIbc allow for a wider range of
bandwidths h and, in particular, result in valid inferences when the MSE-
optimal bandwidth is used. However, they typically have poor performance in
applications because the variability introduced in the bias estimation step is not
incorporated in the variance term used. Despite employing the additional esti-
mated term B̂, CIbc employs the same variance as CIus, essentially ignoring
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the variability that is introduced when B is estimated. This results in a poor
distributional approximation and hence considerable coverage distortions in
practice.

Robust Bias Correction
A superior strategy that is both theoretically sound and leads to improved cov-
erage in finite samples is to use robust bias correction for constructing confi-
dence intervals. This approach leads to demonstrably superior inference pro-
cedures, with smaller coverage error and shorter average length than those
associated with either CIus or CIbc. Furthermore, the robust bias correction
approach delivers valid inferences even when the MSE-optimal bandwidth for
point estimation is used – no undersmoothing is necessary – and remains valid
even when ρ = h/b = 1 (h = b), which implies that exactly the same data can
be used for both point estimation and inference.

Robust bias-corrected confidence intervals are based on the bias correction
procedure described above, by which the estimated bias term B̂ is removed
from the RD point estimator. However, in contrast to CIbc, the derivation allows
the estimated bias term to converge in distribution to a random variable and
thus contribute to the distributional approximation of the RD point estimator.
This results in a new asymptotic variance Vbc that, unlike the variance V used
in CIus and CIbc, incorporates the contribution of the bias correction step to
the variability of the bias-corrected point estimator. Because the new variance
Vbc incorporates the extra variability introduced in the bias estimation step, it
is larger than the conventional OLS variance V when the same bandwidth is
used.

This approach leads to the robust bias-corrected confidence interval:

CIrbc =
[ (
τ̂SRD − B̂

) ± 1.96 · √Vbc

]
,

which is constructed by subtracting the bias estimate from the local polynomial
estimator and using the new variance formula for Studentization. Note that,
like CIbc, CIrbc is centered around the bias-corrected point estimate, τ̂SRD −
B̂, not around the uncorrected estimate τ̂SRD. This robust confidence interval
results in valid inferences when the MSE-optimal bandwidth is used, because it
has smaller coverage errors and is therefore less sensitive to tuning parameter
choices. In practice, the confidence interval can be implemented by setting
ρ = h/b = 1 (h = b) and choosing h = hMSE, or by selecting both h and b

to be MSE-optimal for the corresponding estimators, in which case ρ is set to
hMSE/bMSE or their respective data-driven implementations.
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Table 3 Local Polynomial Confidence Intervals

Centered at Standard Error

Conventional: CIus τ̂SRD
√

V̂

Bias-corrected: CIbc τ̂SRD − B̂
√

V̂

Robust bias-corrected: CIrbc τ̂SRD − B̂

√
V̂bc

We summarize the differences between the three types of confidence inter-
vals in Table 3. The conventional OLS confidence interval CIus ignores the
bias term and is thus centered at the local polynomial point estimator τ̂SRD, and
uses the conventional standard error

√
V̂ . The bias-corrected confidence inter-

val CIbc removes the bias estimate from the conventional point estimator, and
is therefore centered at τ̂SRD − B̂; this confidence interval, however, ignores the
variability introduced in the bias correction step and thus continues to use the
standard error

√
V̂ , which is the same standard error used by CIus. The robust

bias-corrected confidence interval CIrbc is also centered at the bias-corrected
point estimator τ̂SRD − B̂ but, in contrast to CIbc, it employs a different stan-

dard error,
√

V̂bc, which is larger than the conventional standard error
√

V̂

when the same bandwidth h is used. Thus, relative to the conventional confi-
dence interval, the robust bias-corrected confidence interval is both recentered
and rescaled. As discussed above, when h = hMSE, the conventional confidence
interval CIus is invalid.

From a practical perspective, the most important feature of the robust bias-
corrected confidence interval CIrbc is that it can be used with the MSE-optimal
point estimator τ̂SRD when this estimator is constructed using the MSE-optimal
bandwidth choice hMSE. In other words, using the robust bias-corrected con-
fidence interval allows researchers to use the same observations with score
Xi ∈ [c − hMSE,c + hMSE] for both optimal point estimation and valid statistical
inference.

4.3.2 Using Different Bandwidths for Point Estimation and Inference

Conceptually, the invalidity of the conventional confidence interval CIus based
on the MSE-optimal bandwidth hMSE stems from using for inference a band-
width that is optimally chosen for point estimation purposes. Using hMSE for
estimation of the RD effect τSRD results in a point estimator τ̂SRD that is not
only consistent but also has minimal asymptotic MSE. Thus, from a point
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estimation perspective, hMSE leads to highly desirable properties. In contrast,
serious methodological challenges arise when researchers attempt to use hMSE
for building confidence intervals and making inferences in the standard para-
metric way, because the MSE-optimal bandwidth choice is not designed with
the goal of ensuring good (or even valid) distributional approximations. As
shown above, robust bias correction restores a valid standard normal distribu-
tional approximation when hMSE is used by recentering and rescaling the usual
t-statistic, allowing researchers to use the same bandwidth hMSE for both point
estimation and inference.

While employing the MSE-optimal bandwidth for both optimal point es-
timation and valid statistical inference is very useful in practice, it may be
important to also consider statistical inference that is optimal. A natural opti-
mality criterion associated with robustness properties of confidence intervals
is the minimization of their coverage error, that is, the discrepancy between the
empirical coverage of the confidence interval and its nominal level. For exam-
ple, if a 95% confidence interval contains the true parameter 80% of the time,
the coverage error is 15 percentage points. Minimization of coverage error for
confidence intervals is an idea analogous to minimization of MSE for point
estimators.

Thus, an alternative approach to RD inference is to decouple the goal of
point estimation from the goal of inference, using a different bandwidth for
each case. In particular, this strategy involves estimating the RD effect with
hMSE, and constructing confidence intervals using a different bandwidth, where
the latter is specifically chosen to minimize an approximation to the coverage
error (CER) of the confidence interval CIrbc, leading to the choice h = hCER.
Just like hMSE minimizes the asymptotic MSE of the point estimator τ̂SRD, the
CER-optimal bandwidth hCER minimizes the asymptotic coverage error rate of
the robust bias-corrected confidence interval for τSRD. This bandwidth cannot
be obtained in closed form, but it can be shown to have a faster rate of decay
than hMSE, which implies that for all practically relevant sample sizes hCER <

hMSE. By design, constructing CIrbc using the CER-optimal bandwidth choice
hCER leads to confidence intervals that are not only valid but also have the
fastest rate of coverage error decay.

Note that using hCER for point estimation will result in an RD point esti-
mator that has too much variability relative to its bias and is therefore not
MSE-optimal (but is nonetheless consistent). Thus, we recommend that prac-
titioners continue to use hMSE for point estimation of τSRD, and use either hMSE
or hCER to build the robust bias-corrected confidence interval CIrbc for infer-
ence purposes, where CIrbc will be either valid (if hMSE is used) or valid and
CER-optimal (if hCER is used).
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4.3.3 RD Local Polynomial Inference in Practice

We can now discuss the full output of our previous call to rdrobust with p = 1

and triangular kernel, which we reproduce below.

R Snippet 21

> out = rdrobust(Y, X, kernel = "triangular", p = 1, bwselect = "mserd")

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 529 266

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 17.239 17.239

BW bias (b) 28.575 28.575

rho (h/b) 0.603 0.603

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 3.020 1.427 2.116 0.034 [0.223 , 5.817]

Robust - - 1.776 0.076 [-0.309 , 6.276]

=============================================================================

Stata Snippet 21

. rdrobust Y X, kernel(triangular) p(1) bwselect(mserd)

As reported before, the local linear RD effect estimate is 3.020, estimated
within the MSE-optimal bandwidth of 17.239. The last output provides all the
necessary information to make inferences. The row labeled Conventional

reports, in addition to the point estimator τ̂SRD, the conventional standard er-
ror
√

V̂ , the standardized test statistic (τ̂SRD − τSRD)/
√

V̂ , the corresponding

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108684606
Downloaded from https://www.cambridge.org/core. IP address: 152.115.89.212, on 22 Nov 2019 at 20:18:44, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108684606
https://www.cambridge.org/core


A Practical Introduction to RD Designs 65

p-value, and the 95% conventional confidence interval CIus. This confidence
interval ranges from 0.223 to 5.817 percentage points, suggesting a positive
effect of an Islamic victory on the educational attainment of women. Note that
CIus is centered around the conventional point estimator τ̂SRD:

3.020 + 1.427 × 1.96 = 5.81692 ≈ 5.817

3.020 − 1.427 × 1.96 = 0.22308 ≈ 0.223.

The row labeled Robust reports the robust bias-corrected confidence in-
terval CIrbc. In contrast to CIus, CIrbc is centered around the point estimator
τ̂SRD − B̂ (which is by default not reported), and scaled by the robust standard

error
√

V̂bc (not reported either). CIrbc ranges from −0.309 to 6.276; in con-
trast to the conventional confidence interval, it does include zero. As expected,
CIrbc is not centered at τ̂SRD.

For a fixed common bandwidth, the length of CIrbc is always greater than

the length of CIus because
√

V̂bc >
√

V̂ . We can see this in our example:

Length of CIus = 5.817 − 0.223 = 5.594

Length of CIrbc = 6.276 − (−0.309) = 6.585.

However, this will not necessarily be true if different bandwidths are used to
construct each confidence interval.

The omission of the bias-corrected point estimator that is at the center of
CIrbc from the rdrobust output is intentional: when the MSE-optimal band-
width for τ̂SRD is used, the bias-corrected estimator is suboptimal in terms of
MSE relative to τ̂SRD. (Although the bias-corrected estimator is consistent and
valid whenever τ̂SRD is.) Practically, it is usually desirable to report an MSE-
optimal point estimator and then form valid confidence intervals either with
the same MSE-optimal bandwidth or with some other optimal choice specifi-
cally tailored for inference.

In order to see all the ingredients that go into building the robust confidence
interval, we can use the all option in rdrobust.
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R Snippet 22

> out = rdrobust(Y, X, kernel = "triangular", p = 1, bwselect = "mserd",

+ all = TRUE)

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 529 266

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 17.239 17.239

BW bias (b) 28.575 28.575

rho (h/b) 0.603 0.603

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 3.020 1.427 2.116 0.034 [0.223 , 5.817]

Bias-Corrected 2.983 1.427 2.090 0.037 [0.186 , 5.780]

Robust 2.983 1.680 1.776 0.076 [-0.309 , 6.276]

=============================================================================

Stata Snippet 22

. rdrobust Y X, kernel(triangular) p(1) bwselect(mserd) all

The three rows at the bottom of the output are analogous to the the rows
in Table 3: the Conventional row reports CIus, the Bias-Corrected row
reports CIbc, and the Robust row reports CIrbc. We can see that the standard
error used by CIus and CIbc is the same (

√
V̂ = 1.427), while CIrbc uses a

different standard error (
√

V̂bc = 1.680). We also see that the conventional
confidence interval is centered at the conventional, non-bias-corrected point
estimator 3.020, while both CIbc and CIrbc are centered at the bias-corrected
point estimator 2.983. Since we know that τ̂SRD = 3.020 and τ̂SRD − B̂ = 2.983,
we can deduce that the bias estimate is B̂ = 3.020 − 2.983 = 0.037.

Finally, we investigate the properties of robust bias-corrected inference
when employing a CER-optimal bandwidth choice. This is implemented via
rdrobust with the option bwselect="cerrd".
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R Snippet 23

> out = rdrobust(Y, X, kernel = "triangular", p = 1, bwselect = "cerrd")

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type cerrd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 360 216

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 11.629 11.629

BW bias (b) 28.575 28.575

rho (h/b) 0.407 0.407

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 2.430 1.682 1.444 0.149 [-0.868 , 5.727]

Robust - - 1.324 0.186 [-1.158 , 5.979]

=============================================================================

Stata Snippet 23

. rdrobust Y X, kernel(triangular) p(1) bwselect(cerrd)

The common CER-optimal bandwidth for both control and treatment units
is hCER = 11.629, which is smaller than the MSE-optimal bandwidth calculated
previously, hMSE = 17.239. The results are qualitatively similar, but now with
a larger p-value as the nominal 95% robust bias-corrected confidence interval
changes from [−0.309,6.276] with MSE-optimal bandwidth to [−1.158,5.979]

with CER-optimal bandwidth. The RD point estimator changes from the MSE-
optimal value 3.020 to the undersmoothed value 2.43, where the latter RD
estimate can be interpreted as having less bias but more variability than the
former.

Since both the change in bandwidth choice from MSE-optimal to CER-
optimal and the change from one common bandwidth to two different band-
widths are practically important, we conclude this section with a report of
all the bandwidth choices. This is obtained using the all option in the
rdbwselect command.
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R Snippet 24

> out = rdbwselect(Y, X, kernel = "triangular", p = 1, all = TRUE)

> summary(out)

Call: rdbwselect

Number of Obs. 2629

BW type All

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Order est. (p) 1 1

Order bias (q) 2 2

=======================================================

BW est. (h) BW bias (b)

Left of c Right of c Left of c Right of c

=======================================================

mserd 17.239 17.239 28.575 28.575

msetwo 19.967 17.359 32.278 29.728

msesum 17.772 17.772 30.153 30.153

msecomb1 17.239 17.239 28.575 28.575

msecomb2 17.772 17.359 30.153 29.728

cerrd 11.629 11.629 28.575 28.575

certwo 13.468 11.710 32.278 29.728

cersum 11.988 11.988 30.153 30.153

cercomb1 11.629 11.629 28.575 28.575

cercomb2 11.988 11.710 30.153 29.728

=======================================================

Stata Snippet 24

. rdbwselect Y X, kernel(triangular) p(1) all

There are five MSE-optimal bandwidths reported. The row labeled mserd

reports the bandwidth that minimizes the MSE of the RD point estimator under
the constraint that the bandwidth to the left of the cutoff is the same as the band-
width to the right of it, while the row labeled msetwo reports the bandwidth
that minimizes the same MSE but allowing the left and right bandwidths to
be different. In contrast to the mserd and msetwo bandwidths, which optimize
the MSE of the RD point estimator, τ̂SRD = μ̂+ − μ̂−, the msesum row reports
the common bandwidth that minimizes the MSE of the sum of the regres-
sion coefficients, not their difference, that is, the MSE of μ̂+ + μ̂−. The fourth
and fifth rows report a combination of the prior MSE-optimal bandwidths:
msecomb1 is the minimum between mserd and msesum, while msecomb2 is
the median of msetwo, mserd, and msesum. The CER bandwidths reported in
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the last five rows are analogous to the prior five, with the only difference that
the bandwidths reported are optimal with respect to the CER of the confidence
interval for τSRD, not its MSE.

4.4 Extensions

Up to this point, our discussion has considered local polynomials that included
only the running variable as a regressor, in a setting where all the observations
were assumed to be independent. We now discuss how local polynomial meth-
ods can be generalized to accommodate both additional covariates in the model
specification, and clustering of observations.

4.4.1 Adding Covariates to the Analysis

The simplest way to implement RD local polynomial analysis is to fit the out-
come on the score alone. Although this basic specification is sufficient to ana-
lyze most applications, some researchers may want to augment it by including
other covariates in addition to the score. Local polynomial methods can eas-
ily accommodate additional covariates, but the latter must satisfy an important
condition. Unless researchers are willing to invoke parametric assumptions or
redefine the parameter of interest, the covariates used to augment the analysis
must be balanced at the cutoff. In general, covariate adjustment cannot be used
to restore identification of standard RD design treatment effects when treated
and control observations differ systematically at the cutoff. When the empirical
evidence shows that important predetermined covariates differ systematically
at the cutoff, the assumption of continuity of the potential outcomes is implau-
sible, and thus the non-parametric continuity-based RD framework discussed
in this Element is no longer appropriate without further (restrictive) assump-
tions about the data generating process.

We let Zi (1) and Zi (0) denote two vectors of potential covariates, where
Zi (1) represents the value taken by the covariates above the cutoff (i.e., under
treatment), and Zi (0) represents the value taken below the cutoff (i.e., under
control). We assume that these covariates are predetermined, that is, that their
values are determined prior to, or independently from, the treatment assign-
ment and therefore that the treatment effect on them is zero by construction.
For adjustment, researchers use the observed covariates, Zi , defined as

Zi =

⎧⎪⎪
⎨
⎪⎪
⎩

Zi (0) if Xi < c

Zi (1) if Xi ≥ c.

Predetermined covariates can be included in different ways to augment the
basic RD estimation and inference methods. The two most natural approaches
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are (i) conditioning or subsetting, which makes the most sense when only a few
discrete covariates are used, and (ii) partialling out via local polynomial meth-
ods. The first approach amounts to employing all the methods we discussed
so far, after subsetting the data along the different subclasses generated by the
interacted values of the covariates being used. For example, researchers may
want to conduct separate analyses for men and women in the sample to study
whether the estimated effects and confidence intervals differ between the two
subgroups. The implementation of this conditioning approach does not require
any modifications to the methods discussed above; they can be applied directly.

The second approach is based on augmenting the local polynomial model
to include several additional covariates, which can be discrete or continuous.
In this case, the idea is to directly include as many predetermined covariates as
possible without affecting the validity of the point estimator, while at the same
time improving its efficiency.

Our recommended covariate adjustment strategy is to augment the local
polynomial fit by adding the covariates in a linear and additive-separable
way. This involves fitting a weighted least-squares regression of the out-
come Yi on (i) a constant, (ii) the treatment indicator Ti , (iii) a p-order poly-
nomial on the running variable, (Xi − c), (Xi − c)2, . . . , (Xi − c)p , (iv) a
p-order polynomial on the running variable interacted with the treatment,
Ti (Xi − c),Ti (Xi − c)2, . . . ,Ti (Xi − c)p , and (v) the covariates Zi , using the
weights K ((Xi − c)/h). This defines the covariate-adjusted RD estimator:

τ̃SRD : Ỹi = α̃ + τ̃SRDTi + μ̃−,1(Xi − c) + · · · + μ̃−,p (Xi − c)p

+ μ̃+,1Ti (Xi − c) + · · · + μ̃+,pTi (Xi − c)p + Z′i γ̃. (4.3)

The estimator τ̃SRD captures the average outcome jump at the cutoff in a fully
interacted local polynomial regression fit, after partialling out the effect of the
covariates Zi . This approach reduces to the standard RD estimation when no
covariates are included.

A very important question is whether the covariate-adjusted estimator τ̃SRD
estimates the same parameter as the unadjusted estimator τ̂SRD. It can be shown
that under mild regularity conditions, a sufficient condition for τ̃SRD to be con-
sistent for the average treatment effect at the cutoff, τSRD = E[Yi (1)−Yi (0) |Xi =

c], is that the RD treatment effect on the covariates is zero, that is, that the av-
erages of the covariates under treatment and control at the cutoff are equal to
each other, E[Zi (0) |Xi = c] = E[Zi (1) |Xi = c]. This condition is analogous
to the “covariate balance” requirement in randomized experiments, and will
hold naturally when the covariates are truly predetermined.
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Thus, when predetermined covariates are included in the estimation as in
Equation (4.3), the covariate-adjusted estimator estimates the standard RD
treatment effect, τSRD. This result, however, depends crucially on the particular
way in which the covariates are included in (4.3): linearly, additive-separably,
and without interacting the covariates with the treatment. If, instead of adding
Z′i γ̃, we interacted the covariates with the treatment and included the terms
(1−Ti )Z′i γ̌− +TiZ′i γ̌+ , a zero RD treatment effect on the covariates would no
longer be sufficient for τ̃SRD to be a consistent estimator of τSRD. We therefore
recommend including covariates without interacting them with the treatment
indicator, as shown in (4.3).

In sum, if the goal is to estimate the RD treatment effect τSRD, the covariate
adjustment should only include predetermined covariates, as including post-
treatment or imbalanced covariates will change the parameter being estimated.
It follows that, in general, it is not possible to include imbalanced covariates
in the estimation to “fix” an RD design in which predetermined covariates are
discontinuous at the cutoff and the required continuity assumptions are called
into question. For the inclusion of covariates to “control for” unexpected im-
balances, researchers will either need to invoke parametric assumptions on the
regression functions to enable extrapolation, or redefine the parameter of inter-
est. Therefore, analogously to the case of randomized experiments, the gener-
ally valid justification for including covariates in RD analysis is the potential
for efficiency gains, not the promise to fix implausible identification assump-
tions. In many RD applications, a covariate-adjusted local polynomial estima-
tion strategy will lead to shorter confidence intervals for the RD treatment
effect, increasing the precision of statistical inferences.

Practical Implementation of Covariate-Adjusted RD Analysis
Including covariates in a linear-in-parameters way as in Equation (4.3) requires
the same type of choices as in the standard, unadjusted case: a polynomial or-
der p, a kernel function K (·), and a bandwidth h. Once again, the bandwidth
is a crucial choice, and we recommend using optimal data-driven methods to
select it. Since the covariate-adjusted point estimator τ̃SRD is a function of the
covariates, its MSE will also be a function of the covariates. Thus, the optimal
bandwidth choices for τ̃SRD will depend on the covariates and will be in general
different from the previously discussed bandwidths hMSE and hCER. As a conse-
quence, the principled implementation of covariate-adjusted local polynomial
methods requires employing an MSE-optimal bandwidth that accounts for the
inclusion of covariates in the bandwidth selection step. Although we omit the
technical details here, both the MSE-optimal and the CER-optimal bandwidth

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108684606
Downloaded from https://www.cambridge.org/core. IP address: 152.115.89.212, on 22 Nov 2019 at 20:18:44, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108684606
https://www.cambridge.org/core


72 Quantitative and Computational Methods for the Social Sciences

choices that account for covariate adjustment have been theoretically derived;
and they are both implemented in the rdrobust software.

We illustrate the inclusion of covariates with the Meyersson application,
using the predetermined covariates introduced in Section 2.1: variables from
the 1994 election (vshr islam1994, partycount, lpop1994), and the geo-
graphic indicators (merkezi, merkezp, subbuyuk, buyuk). In order to keep
the same number of observations as in the analysis without covariates, we ex-
clude the indicator for electing an Islamic party in 1989 (i89) because this
variable has many missing values.

We start by using rdbwselect to choose an MSE-optimal bandwidth with
covariates, using the default options: a polynomial of order one, a triangular
kernel, and the same bandwidth on each side of the cutoff (mserd option). We
include covariates using the option covs.

R Snippet 25

> Z = cbind(data$vshr_islam1994, data$partycount, data$lpop1994,

+ data$merkezi, data$merkezp, data$subbuyuk, data$buyuk)

> colnames(Z) = c("vshr_islam1994", "partycount", "lpop1994", "merkezi",

+ "merkezp", "subbuyuk", "buyuk")

> out = rdbwselect(Y, X, covs = Z, kernel = "triangular", scaleregul = 1,

+ p = 1, bwselect = "mserd")

> summary(out)

Call: rdbwselect

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Order est. (p) 1 1

Order bias (q) 2 2

=======================================================

BW est. (h) BW bias (b)

Left of c Right of c Left of c Right of c

=======================================================

mserd 14.409 14.409 23.731 23.731

=======================================================

Stata Snippet 25

. global covariates "vshr_islam1994 partycount lpop1994 merkezi merkezp subbuyuk buyuk"

. rdbwselect Y X, covs($covariates) p(1) kernel(triangular) bwselect(mserd) scaleregul(1)

The MSE-optimal bandwidth including covariates is 14.409, considerably
different from the value of 17.239 that we found before in the absence of
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covariate adjustment. This illustrates the general principle that covariate adjust-
ment will generally change the values of the optimal bandwidths, which in turn
will change the point estimates. (Note, however, that the covariate-adjusted lo-
cal polynomial RD estimate would be different from the unadjusted estimate
even if the same bandwidth were employed, as in finite samples the inclusion
of covariates will change the estimated coefficients in the local polynomial fit.)

To perform covariate-adjusted local polynomial estimation and inference,
we use the rdrobust command using the covs option.

R Snippet 26

> Z = cbind(data$vshr_islam1994, data$partycount, data$lpop1994,

+ data$merkezi, data$merkezp, data$subbuyuk, data$buyuk)

> colnames(Z) = c("vshr_islam1994", "partycount", "lpop1994", "merkezi",

+ "merkezp", "subbuyuk", "buyuk")

> out = rdrobust(Y, X, covs = Z, kernel = "triangular", scaleregul = 1,

+ p = 1, bwselect = "mserd")

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 448 241

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 14.409 14.409

BW bias (b) 23.731 23.731

rho (h/b) 0.607 0.607

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 3.108 1.284 2.421 0.015 [0.592 , 5.624]

Robust - - 2.088 0.037 [0.194 , 6.132]

=============================================================================

Stata Snippet 26

. global covariates "vshr_islam1994 partycount lpop1994 merkezi merkezp subbuyuk buyuk"

. rdrobust Y X, covs($covariates) p(1) kernel(triangular) bwselect(mserd) scaleregul(1)

The estimated RD effect is now 3.108, similar to the unadjusted estimate
of 3.020 that we found before. This similarity is reassuring because, if the
included covariates are truly predetermined, the unadjusted estimator and the
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covariate-adjusted estimator are estimating the same parameter and should
result in similar estimates. In terms of inference, with the inclusion of co-
variates, the 95% robust confidence interval is now [0.194,6.132]. The un-
adjusted robust confidence interval we estimated in the previous section is
[−0.309,6.276]. Thus, including covariates reduces the length of the confi-
dence interval from 6.276 − (−0.309) = 6.585 to 6.132 − 0.194 = 5.938, a
reduction of (|5.938 − 6.585|/6.585) × 100 = 9.82%. The shorter confidence
interval obtained with covariate adjustment (and the slight increase in the point
estimate) results in the robust p-value decreasing from 0.076 to 0.037.

This exercise illustrates the main benefit of covariate adjustment in local
polynomial RD estimation: when successful, the inclusion of covariates in the
analysis decreases the length of the confidence interval while simultaneously
leaving the point estimate (roughly) unchanged.

4.4.2 Clustering the Standard Errors

Another issue commonly encountered by practitioners is the clustering of ob-
servations in groups, such as individuals inside households, municipalities in-
side counties, or households inside villages. When the units of analysis are
clustered into groups and the researcher suspects that the errors are correlated
within (but not across) groups, it may be appropriate to employ variance esti-
mators that are robust to the clustered nature of the data.

Using ideas from least-squares estimation and inference methods, it is pos-
sible to adjust the local polynomial variance estimators to account for clus-
tering. Since the CER- and MSE-optimal bandwidth selectors depend on the
variance estimators, employing cluster-robust variance estimators changes the
optimal bandwidth relative to the case of no clustering. Consequently, in the
local polynomial RD setting (and in contrast to the ordinary least-squares set-
ting) employing cluster-robust variance estimators leads not only to different
estimated standard errors relative to the unclustered case, but also to different
point estimates. In general, cluster-robust variance estimators can be smaller
or larger than variance estimators that do not account for clustering. This fact,
combined with the associated change in the point estimator that results from
the change in the optimal bandwidth when cluster-robust variance estimators
are employed, means that cluster-robust standard errors can lead to recentered
confidence intervals that can be either shorter or longer in length.

The cluster-robust variance estimation formulas are beyond the scope of this
practical guide, but we do illustrate how to employ these estimators in practice
using rdrobust. We provide further illustration of these methods in the dis-
cussion of RD designs with discrete running variables in the accompanying
Element (Cattaneo, Idrobo, and Titiunik, forthcoming).
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In the Meyersson application, we estimate the effect of Islamic victory on
the educational attainment of women, clustering each individual observation
(which corresponds to a municipality) by province. In rdrobust, we use the
option cluster to pass the variable that contains the cluster information for
every observation.

R Snippet 27

> out = rdrobust(Y, X, kernel = "triangular", scaleregul = 1, p = 1,

+ bwselect = "mserd", cluster = data$prov_num)

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 584 277

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 19.035 19.035

BW bias (b) 29.873 29.873

rho (h/b) 0.637 0.637

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 2.969 1.604 1.851 0.064 [-0.175 , 6.113]

Robust - - 1.635 0.102 [-0.583 , 6.460]

=============================================================================

Stata Snippet 27

. rdrobust Y X, p(1) kernel(triangular) bwselect(mserd) ///

> scaleregul(1) vce(nncluster prov_num)

Using a cluster-robust variance estimator leads to a point estimator of 2.969
percentage points, slightly smaller than the point estimator of 3.020 that we ob-
tained without clustering in Section 4.2.4. This change in the point estimate oc-
curs because the MSE-optimal bandwidth is now 19.035, larger than the 17.239
bandwidth estimated in the absence of clustering. In addition, the cluster-
robust variance estimator is larger than the unclustered variance estimator –
for example, comparing to the prior results in the absence of clustering, the
conventional standard error changes from 1.427 to 1.604 when a cluster-robust
estimator is used. The decrease in the point estimator, together with the in-
crease in the variance, lead to a wider confidence interval; with a cluster-robust
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variance estimator, the robust confidence interval is [−0.583,6.460], wider and
with center closer to zero than the [−0.309,6.276] robust confidence interval
in the absence of clustering.

We can also combine a cluster-robust variance estimator with covariate
adjustment in the local polynomial fit, using the covs and cluster options
simultaneously.

R Snippet 28

> Z = cbind(data$vshr_islam1994, data$partycount, data$lpop1994,

+ data$merkezi, data$merkezp, data$subbuyuk, data$buyuk)

> colnames(Z) = c("vshr_islam1994", "partycount", "lpop1994", "merkezi",

+ "merkezp", "subbuyuk", "buyuk")

> out = rdrobust(Y, X, covs = Z, kernel = "triangular", scaleregul = 1,

+ p = 1, bwselect = "mserd", cluster = data$prov_num)

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 481 254

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 15.675 15.675

BW bias (b) 24.663 24.663

rho (h/b) 0.636 0.636

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 3.146 1.301 2.419 0.016 [0.597 , 5.696]

Robust - - 2.121 0.034 [0.243 , 6.154]

=============================================================================

Stata Snippet 28

. global covariates "vshr_islam1994 partycount lpop1994 merkezi merkezp subbuyuk buyuk"

. rdrobust Y X, covs($covariates) p(1) kernel(triangular) bwselect(mserd) ///

> scaleregul(1) vce(nncluster prov_num)

Relative to the unadjusted, unclustered case, adding covariates and employ-
ing cluster-robust variance estimators leads to a different optimal bandwidth of
15.675, which changes the point estimate to 3.146. Once again, these changes
translate into a different confidence interval, equal to [0.243,6.154]. Relative
to the case of cluster-robust variance estimator without covariate adjustment,
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adding covariates reduces the length of the confidence interval and shifts it
to the right. As a result, the cluster-robust covariate-adjusted 95% confidence
interval does not include zero.

4.5 Further Reading

A textbook discussion of non-parametric local polynomial methods can be
found in Fan and Gijbels (1996), and their application to RD estimation and
inference is discussed by Hahn, Todd, and van der Klaauw (2001). Calonico,
Cattaneo, and Titiunik (2015a) and Gelman and Imbens (2019) discuss the
role of global polynomial estimation for RD analysis. MSE-optimal band-
width selection for the local polynomial RD point estimator is developed in
Imbens and Kalyanaraman (2012), Calonico, Cattaneo, and Titiunik (2014b),
Bartalotti and Brummet (2017), Calonico, Cattaneo, Farrell, and Titiunik
(2019), and Arai and Ichimura (2018). Robust bias corrected confidence in-
tervals were proposed by Calonico, Cattaneo, and Titiunik (2014b), and their
higher-order properties as well as CER-optimal bandwidth selection were de-
veloped by Calonico, Cattaneo, and Farrell (2018, 2019a,b). See also Cattaneo
and Vazquez-Bare (2016) for an overview of RD bandwidth selection methods.
Bootstrap methods based on robust bias correction are developed in Bartalotti,
Calhoun, and He (2017). RD analysis with the inclusion of predetermined co-
variates and cluster-robust inference is discussed in Calonico, Cattaneo, Far-
rell, and Titiunik (2019), and other extensions of estimation and inference
using robust bias correction are discussed in Xu (2017), Dong (2019), and
Dong, Lee, and Gou (2019). Hyytinen et al. (2018) offer an empirical example
assessing the performance of robust bias correction inference methods. Catta-
neo, Titiunik, and Vazquez-Bare (2018) discuss power calculations using local
polynomial methods in RD designs. Further related results and references are
given in the edited volume by Cattaneo and Escanciano (2017).

5 Validation and Falsification of the RD Design
A main advantage of the RD design is that the mechanism by which treatment
is assigned is known and based on observable features, giving researchers an
objective basis to distinguish pre-treatment from post-treatment variables, and
to identify qualitative information regarding the treatment assignment process
that can be helpful to justify assumptions. However, the known rule that assigns
treatment based on the score and cutoff is not by itself enough to guarantee that
the assumptions needed to recover the RD effect are met.

For example, a scholarship may be assigned based on whether students re-
ceive an exam grade above a cutoff, but if the cutoff is known to the students’
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parents and there are mechanisms to appeal the grade, the RD design may be
invalid if systematic differences among students are present due to the appeal
process. Formally, the presence of an appeal process might invalidate the as-
sumption that the average potential outcomes are continuous at the cutoff. If
the parents who are successful in appealing the grade when their child is barely
below the cutoff are systematically different from the parents who choose not
to appeal in ways that affect the outcome of interest, then the RD design based
on the final grade assigned to each student would be invalid (while the RD
design based on the original grade would not). For instance, if the outcome of
interest is performance on a future exam and parent involvement is positively
correlated with students’ future academic achievement, the average potential
outcomes of students at or just above the cutoff will be much higher than the
average potential outcomes of students just below the cutoff, leading to a dis-
continuity at the cutoff and thus invalidating the RD design.

If the RD cutoff is known to the units that will be the beneficiaries of
the treatment, researchers must worry about the possibility of units actively
changing or manipulating the value of their score when they miss the treat-
ment barely. Thus, the first type of information that should be provided is
whether an institutionalized mechanism to appeal the score exists, and if so,
how often (and by whom) it is used to successfully change the score. Quali-
tative data about the administrative process by which scores are assigned, cut-
offs determined and publicized, and treatment decisions appealed, is extremely
useful to validate the design. For example, social programs are commonly as-
signed based on some poverty index; if program officers moved units with in-
dex barely below the cutoff to the treatment group in a systematic way (e.g., all
households with small children), then the RD design would be invalid when-
ever the systematic differences between treated and control units near the cutoff
were correlated with outcome differences. This type of behavior can typically
be identified by collecting qualitative information (such as interviews, internal
rules and memos, etc.) from the program administration officers.

In many cases, however, qualitative information will be limited, and re-
searchers will be unable to completely rule out the possibility of units manipu-
lating their score. More importantly, the fact that there are no institutionalized
or known mechanisms to appeal and change the score does not imply the ab-
sence of informal mechanisms by which this may happen. Thus, an essential
step in evaluating the plausibility of the RD assumptions is to provide empir-
ical evidence supporting the validity of the design. Naturally, the continuity
assumptions that guarantee the validity of the RD design are about unobserv-
able features and as such are inherently untestable. Nonetheless, the RD de-
sign offers an array of empirical methods that, under reasonable assumptions,
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can provide useful evidence about the plausibility of its assumptions. These
so-called validation methods are based on various empirical implications of
the unobservable RD assumptions that can be expected to hold in most cases,
and can provide indirect evidence about its validity.

We now discuss five empirical validation tests based on (i) the null treatment
effect on predetermined covariates or placebo outcomes, (ii) the continuity of
the score density around the cutoff, (iii) the treatment effect at artificial cutoff
values, (iv) the exclusion of observations near the cutoff, and (v) the sensitivity
to bandwidth choices.

5.1 Predetermined Covariates and Placebo Outcomes

One of the most important RD falsification tests involves examining whether,
near the cutoff, treated units are similar to control units in terms of observable
characteristics. The idea is simply that, if units lack the ability to precisely ma-
nipulate the score value they receive, there should be no systematic differences
between units with similar values of the score. Thus, except for their treatment
status, units just above and just below the cutoff should be similar in all vari-
ables that could not have been affected by the treatment. These variables can
be divided into two groups: variables that are determined before the treatment
is assigned – which we call predetermined covariates; and variables that are
determined after the treatment is assigned but, according to substantive knowl-
edge about the treatment’s causal mechanism, could not possibly have been
affected by the treatment – which we call placebo outcomes.

Note that predetermined covariates can be unambiguously defined, but
placebo outcomes are always specific to each application. For example, any
characteristic that is determined before the moment when treatment is assigned
is generally a predetermined covariate. In contrast, whether a variable is a
placebo outcome depends on the particular treatment under consideration. For
example, if the treatment is access to clean water and the outcome of interest is
child mortality, a treatment effect is expected on mortality due to water-borne
illnesses but not on mortality due to other causes such as car accidents (see
Galiani, Gertler, and Schargrodsky, 2005). Thus, mortality from road acci-
dents would be a reasonable placebo outcome in this example. However, child
mortality from road accidents would not be an adequate placebo outcome to
validate an RD design that studies the effects of a safety program aimed at
increasing the use of car seats.

Regardless of whether the analysis is based on predetermined covariates
or placebo outcomes, the fundamental principle behind this type of falsifica-
tion analysis is always the same: all predetermined covariates and placebo out-
comes should be analyzed in the same way as the outcome of interest. In the
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continuity-based approach, this principle means that for each predetermined
covariate or placebo outcome, researchers should first choose an optimal band-
width, and then use local polynomial techniques within that bandwidth to es-
timate the “treatment effect” and employ valid inference procedures such as
the robust bias-corrected methods discussed previously. The fundamental idea
behind this test is that, since the predetermined covariate (or placebo outcome)
could not have been affected by the treatment, the null hypothesis of no treat-
ment effect should not be rejected if the RD design is valid. The reasoning
is that if covariates or placebo outcomes that are known to correlate strongly
with the outcome of interest are discontinuous at the cutoff, the continuity of
the potential outcome functions is unlikely to hold, and thus the validity of the
design is called into question.

When using the continuity-based approach to RD analysis, this falsification
test employs the local polynomial techniques discussed in Section 4 to test
whether the predetermined covariates and placebo outcomes are continuous at
the cutoff, in other words, to test whether the treatment has an effect on them.
We illustrate with the Meyersson application, using the set of predetermined
covariates used for covariate adjustment in Section 4.2.4. We start by present-
ing a graphical analysis, creating an RD plot for every covariate using rdplot

with the default options (mimicking variance, evenly-spaced bins). The plots
are presented in Figure 16. The specific commands are omitted to conserve
space, but they are included in the online replication materials.

The graphical analysis does not reveal obvious discontinuities at the cutoff,
but of course a statistical analysis is required before we can reach a formal
conclusion. In order to implement the analysis, an optimal bandwidth must be
chosen for each covariate. Crucially, these bandwidths will be generally dif-
ferent from the bandwidth used to analyze the original outcome of interest.
As shown in the RD plots, each covariate exhibits a different estimated re-
gression function, with different curvature and overall shape. As a result, the
optimal bandwidth for local polynomial estimation and inference will be dif-
ferent for every variable, and must be re-estimated accordingly in each case.
This implies that the statistical analysis must be conducted separately for each
covariate, choosing a different optimal bandwidth for each covariate analyzed.

To implement this formal falsification test, we simply run rdrobust using
each covariate of interest as the outcome variable. As an example, we analyze
the covariate lpop1994, the logarithm of the municipality population in 1994.
Since this covariate was measured in 1994, it could not have been affected by
the treatment, that is, by the party that wins the 1994 election. We estimate
a local linear RD effect with triangular kernel weights and common MSE-
optimal bandwidth using the default options in rdrobust.
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Figure 16 RD Plots for Predetermined Covariates (Meyersson Application)
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R Snippet 29

> out = rdrobust(data$lpop1994, X)

> summary(out)

Call: rdrobust

Number of Obs. 2629

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2314 315

Eff. Number of Obs. 400 233

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 13.319 13.319

BW bias (b) 21.366 21.366

rho (h/b) 0.623 0.623

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 0.012 0.278 0.045 0.964 [-0.532 , 0.557]

Robust - - 0.001 0.999 [-0.644 , 0.645]

=============================================================================

Stata Snippet 29

. rdrobust lpop1994 X

The point estimate is very close to zero and the robust p-value is 0.999, so
we find no evidence that, at the cutoff, treated and control municipalities differ
systematically in this covariate. In other words, we find no evidence that the
population size of the municipalities is discontinuous at the cutoff. In order to
provide a complete falsification test, the same estimation and inference proce-
dure should be repeated for all important covariates, that is, for all available
covariates that would be expected to be correlated with the treatment in the
presence of manipulation. In a convincing RD design, these tests would show
that there are no discontinuities in any variable. Table 4 contains the local poly-
nomial estimation and inference results for several predetermined covariates in
the Meyersson dataset. All results were obtained employing rdrobustwith the
default specifications, as shown for lpop1994 above.

All point estimates are small and all 95% robust confidence intervals con-
tain zero, with p-values ranging from 0.333 to 0.999. In other words, there
is no empirical evidence that these predetermined covariates are discontinu-
ous at the cutoff. Note that the number of observations used in the analysis
varies for each covariate; this occurs because the MSE-optimal bandwidth is
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different for every covariate analyzed. Note also that we employ the default
rdrobust options for simplicity, but for falsification purposes it may be more
appropriate to use the CER-optimal bandwidth because, in this case, we are
only interested in testing the null hypothesis of no effect, that is, we are mostly
interested in inference and the point estimates are of no particular interest.
These two alternative bandwidth choices give a natural trade-off between size
and power of the falsification tests: the MSE-optimal bandwidth leads to more
powerful hypothesis tests with possibly larger size distortions than tests im-
plemented using the CER-optimal bandwidth. In this application, switching to
bwselect="cerrd" does not change any of the empirical conclusions (results
available in the replication files).

We complement these results with a graphical illustration of the RD effects
for every covariate, to provide further evidence that in fact these covariates do
not jump discretely at the cutoff. For this, we employ rdplot with the same
options we used for inference in rdrobust: we plot each covariate inside their
respective MSE-optimal bandwidth, using a polynomial of order one, and a
triangular kernel function to weigh the observations. Below we illustrate the
specific command for the lpop1994 covariate.

R Snippet 30

> bandwidth = rdrobust(data$lpop1994, X)$bws[1, 1]

> xlim = ceiling(bandwidth)

> rdplot(data$lpop1994[abs(X) <= bandwidth], X[abs(X) <= bandwidth],

+ p = 1, kernel = "triangular", x.lim = c(-xlim, xlim), x.label = "Score",

+ y.label = "", title = "", cex.axis = 1.5, cex.lab = 1.5)

Stata Snippet 30

. rdrobust lpop1994 X

. local bandwidth = e(h_l)

. rdplot lpop1994 X if abs(X) <= ‘bandwidth’, h(‘bandwidth’) p(1) kernel(triangular)

We run the same commands for each covariate. A sample of the resulting
plots is presented in Figure 17. Consistent with the formal statistical results,
the graphical analysis within the optimal bandwidth shows that the right and
left intercepts in the local linear fits are very close to each other in most cases
(the variable Islamic Mayor in 1989 shows a more noticeable jump, but
the formal analysis above indicates that this jump is not distinguishable from
zero).

The plots and estimated effects for the covariates stand in contrast to the
analogous results we reported for the outcome of interest in the previous sec-
tions, where, despite some variability, we saw a more noticeable jump at the
cutoff. In general, a stark contrast between null effects for the covariates and a
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Figure 17 Graphical Illustration of Local Linear RD Effects for
Predetermined Covariates (Meyersson data)

large non-zero effect for the outcome can be interpreted as evidence in favor of
the validity of the RD design. However, the converse is not true, as it is possi-
ble to see a valid RD design where the treatment has no effect on the outcome,
and thus where both covariate and outcome results are null.

5.2 Density of Running Variable

The second type of falsification test examines whether, in a local neighborhood
near the cutoff, the number of observations below the cutoff is surprisingly
different from the number of observations above it. The underlying assumption
is that, if units do not have the ability to precisely manipulate the value of the
score that they receive, the number of treated observations just above the cutoff
should be approximately similar to the number of control observations below
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it. In other words, even if units actively attempt to affect their score, in the
absence of precise manipulation, random change would place roughly the same
amount of units on either side of the cutoff, leading to a continuous probability
density function when the score is continuously distributed. RD applications
where there is an abrupt change in the number of observations at the cutoff
will tend to be less credible.

Figure 18 shows a histogram of the running variable in two hypothetical
RD examples. In the scenario illustrated in Figure 18(a), the number of obser-
vations above and below the cutoff is very similar. In contrast, Figure 18(b)
illustrates a case in which the density of the score right below the cutoff is con-
siderably lower than just above it – a finding that suggests that units were able
to systematically increase the value of their original score to be assigned to the
treatment instead of the control group.

In addition to a graphical illustration of the density of the running variable,
researchers should explore the assumption more formally using a statistical
test, often called a density test. One possible strategy is to choose a small
neighborhood around the cutoff, and perform a simple Bernoulli test within
that neighborhood with a probability of “success” equal to 1/2. This strategy
tests whether the number of treated observations in the chosen neighborhood
is compatible with what would have been observed if units had been assigned
to the treatment group (i.e., to being above the cutoff) with a 50% probability.
The test is finite sample exact, under the assumptions imposed.

For example, if we keep only the observations with Xi ∈ [−2,2] in the
Meyersson application, we find that in this neighborhood there are 47 control
observations and 53 treated observations. Using this information and setting
a probability of success equal to 1/2, we can perform a binomial test using
standard functions in R or Stata.
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R Snippet 31

> binom.test(53, 100, 1/2)

Exact binomial test

data: 53 and 100

number of successes = 53, number of trials = 100, p-value = 0.6173

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.4275815 0.6305948

sample estimates:

probability of success

0.53

Stata Snippet 31

. bitesti 100 53 1/2

The p-value is 0.6173, so this simple test finds no evidence of “sorting”
around the cutoff in this neighborhood: the numbers of treated and control
observations are consistent with what would be expected if municipalities were
assigned to an Islamic win or loss by the flip of an unbiased coin.

In a continuity-based approach, however, there are often not clear guide-
lines about how to choose the neighborhood where the binomial test should be
conducted. Nevertheless, it is natural to conduct this test for different (nested)
neighborhoods around the cutoff. Furthermore, the use of this randomization-
based test is also natural in the context of a local randomization approach
to RD analysis, which we discuss extensively in the accompanying Element
(Cattaneo, Idrobo, Titiunik, forthcoming).

A complementary approach is to conduct a test of the null hypothesis that
the density of the running variable is continuous at the cutoff, which fits nat-
urally into the continuity-based framework adopted in this Element. The im-
plementation of this test requires the estimation of the density of observations
near the cutoff, separately for observations above and below the cutoff. We
employ here an implementation based on a local polynomial density estima-
tor that does not require pre-binning of the data and leads to size and power
improvements relative to other approaches. The null hypothesis is that there is
no “manipulation” of the density at the cutoff, formally stated as continuity of
the density functions for control and treatment units at the cutoff. Therefore,
failing to reject implies that there is no statistical evidence of manipulation at
the cutoff, and offers evidence supporting the validity of the RD design.

We implement this density test using the Meyersson data using the
rddensity command, which is part of the rddensity library/package. Its
only required argument is the running variable.
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R Snippet 32

> out = rddensity(X)

> summary(out)

RD Manipulation Test using local polynomial density estimation.

Number of obs = 2629

Model = unrestricted

Kernel = triangular

BW method = comb

VCE method = jackknife

Cutoff c = 0 Left of c Right of c

Number of obs 2314 315

Eff. Number of obs 965 301

Order est. (p) 2 2

Order bias (q) 3 3

BW est. (h) 30.54 28.285

Method T P > |T|

Robust -1.394 0.1633

Stata Snippet 32

. rddensity X

The value of the statistic is −1.394 and the associated p-value is 0.1633.
This means that under the continuity-based approach, we fail to reject the null
hypothesis of no difference in the density of treated and control observations
at the cutoff. Figure 19 provides a graphical representation of the continuity
in density test approach, exhibiting both a histogram of the data and the ac-
tual density estimate with shaded 95% confidence intervals. As we can see in
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Figure 19(b), the density estimates for treated and control groups at the cutoff
(the two intercepts in the figure) are very near each other, and the confidence
intervals (shaded areas) overlap. This plot is consistent with the results from
the formal test.

5.3 Placebo Cutoffs

Another useful falsification analysis examines treatment effects at artificial or
placebo cutoff values. To understand the motivation behind this falsification
test, recall that the key RD identifying assumption is the continuity (or lack of
abrupt changes) of the regression functions for treatment and control units at
the cutoff in the absence of the treatment. While such a condition is fundamen-
tally untestable at the cutoff, researchers can investigate empirically whether
the estimable regression functions for control and treatment units are contin-
uous at points other than the cutoff. Evidence of continuity away from the
cutoff is, of course, neither necessary nor sufficient for continuity at the cutoff,
but the presence of discontinuities away from the cutoff can be interpreted as
potentially casting doubt on the RD design, at the very least in cases where
such discontinuities cannot be explained by substantive knowledge of the spe-
cific application. Another related use of this approach is to check whether the
smoothness and other conditions needed for RD inference are supported by the
data, at least in regions other than at the cutoff point.

This test replaces the true cutoff value by another value at which the treat-
ment status does not really change, and performs estimation and inference us-
ing this artificial cutoff point. The expectation is that no significant treatment
effect will occur at placebo cutoff values. A graphical implementation of this
falsification approach follows directly from the RD plots discussed extensively
in Section 3, by simply assessing whether there are jumps in the observed
regression functions at points other than the true cutoff. A more formal im-
plementation of this idea conducts statistical estimation and inference for RD
treatment effects at artificial cutoff points, using control and treatment units
separately. In the continuity-based framework adopted in this Element, we im-
plement this approach using local-polynomial methods within an optimally
chosen bandwidth around the artificial cutoff to estimate treatment effects on
the outcome, as we explained in Section 4.

In order to illustrate the procedure with the Meyersson data, we employ
rdrobust after restricting to the appropriate group and specifying the artificial
cutoff. To avoid “contamination” due to real treatment effects, for artificial cut-
offs above the real cutoff we use only treated observations, and for artificial
cutoffs below the real cutoff we use only control observations. Restricting the
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observations in this way guarantees that the analysis of each placebo cutoff
uses only observations with the same treatment status. Thus, by construction,
the treatment effect at each artificial cutoff should be zero.

We conduct estimation and inference at the artificial cutoff c = 1 in the
Meyersson application, using the option c = 1 in rdrobust and including
only treated observations. Our analysis thus compares the educational out-
comes of municipalities where Islamic mayors won by a margin of 1% or more,
to municipalities where Islamic mayors won by less than 1%. Since there is an
Islamic mayor on both sides of the cutoff, we expect to see no discontinuity in
the outcome at 1%.

R Snippet 33

> out = rdrobust(Y[X >= 0], X[X >= 0], c = 1)

> summary(out)

Call: rdrobust

Number of Obs. 315

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 30 285

Eff. Number of Obs. 30 49

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 2.362 2.362

BW bias (b) 3.326 3.326

rho (h/b) 0.710 0.710

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional -1.131 4.252 -0.266 0.790 [-9.464 , 7.202]

Robust - - 0.270 0.787 [-9.967 , 13.147]

=============================================================================

Stata Snippet 33

. rdrobust Y X if X >= 0, c(1)

The robust p-value is 0.787, consistent with the conclusion that the outcome
of interest does not jump at the artificial 1% cutoff, and in contrast to the
results at the true cutoff reported in Section 4. Table 5 presents the results
of similar analyses for other placebo cutoffs ranging from −5% to 5% in
increments of 1%. Figure 20 graphically illustrates the main results from this
falsification test.
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Figure 20 RD Estimation for True and Artificial Cutoffs

The true cutoff of 0 is included in order to have a benchmark to compare –
the particular results regarding the true cutoff were discussed at length in
Section 4. All other cutoffs are artificial or placebo, in the sense that treat-
ment did not actually change at those points. We find that in all but one of the
artificial cutoff points, the RD point estimator is smaller in absolute value than
the true RD estimate (3.020), and that all p-values are above 0.4. Therefore,
we conclude that the outcome of interest does not jump discontinuously at the
artificial cutoffs considered.

5.4 Sensitivity to Observations near the Cutoff

Another falsification approach seeks to investigate how sensitive the results
are to the response of units who are located very close to the cutoff. If system-
atic manipulation of score values has occurred, it is natural to assume that the
units closest to the cutoff are those most likely to have engaged in manipula-
tion. The idea behind this approach is to exclude such units and then repeat
the estimation and inference analysis using the remaining sample. This idea is
sometimes referred to as a “donut hole” approach. Even when manipulation of
the score is not suspected, this strategy is also useful to assess the sensitivity
of the results to the unavoidable extrapolation involved in local polynomial es-
timation, as the few observations closest to the cutoff are likely to be the most
influential when fitting the local polynomials.
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For implementation in the continuity-based approach, we use rdrobust af-
ter subsetting the data. For example, in the Meyersson application, we consider
first the case where units with score |Xi | < 0.3 are excluded from the analysis,
which requires us to engage in more extrapolation than before. The exclusion
of observations implies that a new optimal bandwidth will be selected.

R Snippet 34

> out = rdrobust(Y[abs(X) >= 0.3], X[abs(X) >= 0.3])

> summary(out)

Call: rdrobust

Number of Obs. 2616

BW type mserd

Kernel Triangular

VCE method NN

Number of Obs. 2307 309

Eff. Number of Obs. 482 248

Order est. (p) 1 1

Order bias (p) 2 2

BW est. (h) 16.043 16.043

BW bias (b) 27.520 27.520

rho (h/b) 0.583 0.583

=============================================================================

Method Coef. Std. Err. z P>|z| [ 95% C.I. ]

=============================================================================

Conventional 3.414 1.517 2.251 0.024 [0.441 , 6.387]

Robust - - 1.923 0.055 [-0.067 , 6.965]

=============================================================================

Stata Snippet 34

. rdrobust Y X if abs(X) >= 0.3

The results show that the conclusions from the analysis are robust to ex-
cluding observations with |Xi | < 0.3. In the new analysis, we have 2307 total
observations to the left of the cutoff, and 309 total observations to the right of
it. As expected, these numbers are smaller than those employed in the original
analysis (2314 and 315). Note that, although the total number of observations
will always decrease when observations closest to the cutoff are excluded, the
effective number of observations used in the analysis may increase or decrease,
depending on how the bandwidth changes. In this case, the bandwidth changes
from 17.239 in the original analysis to 16.043 in the analysis that excludes
units with |Xi | < 0.3; this results in a loss of 65 effective observations, from
795 (529 + 266) to 730 (482 + 248), which is much larger than the decrease
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Figure 21 RD Estimation for the Donut-Hole Approach

in total observations, which is only 13. The exclusion of these observations
changes the point estimate from 3.020 to 3.414, and the robust confidence in-
terval from [−0.309,6.276] to [−0.067,6.965]. The conclusion of the analysis
remains largely unchanged, however, since both the original and the new esti-
mated effect are significant at 10% level.

In practice, it is natural to repeat this exercise a few times to assess the
actual sensitivity for different amounts of excluded units. Table 6 illustrates
this approach, and Figure 21 depicts the results graphically. In all the cases
considered, the conclusions remain unchanged.

5.5 Sensitivity to Bandwidth Choice

The last falsification method we discuss analyzes the sensitivity of the results
to the bandwidth choice. In contrast to the donut hole approach, which investi-
gates sensitivity as units from the center of the neighborhood around the cutoff
are removed, the method we discuss now investigates sensitivity as units are
added or removed at the end points of the neighborhood. The implementation
of this method is also straightforward, as it requires employing local polyno-
mial methods with different bandwidth choices. However, the interpretation of
the results must be done with care. As we discussed throughout this Element,
choosing the bandwidth is one of the most consequential decisions in RD anal-
ysis, because the bandwidth may affect the results and conclusions.
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In the continuity-based approach, this falsification test is implemented by
changing the bandwidth used for local polynomial estimation. It is well under-
stood how the bandwidth will affect the results: as the bandwidth increases,
the bias of the local polynomial estimator increases and its variance decreases.
Thus, it is natural to expect that, as we increase the bandwidth, the confidence
intervals will decrease in length but will also be displaced (because of the bias).

The considerations above suggest that when the goal is to interpret point es-
timators, investigating the sensitivity to bandwidth choices is only useful over
small ranges around the MSE-optimal bandwidth; otherwise, the results will
be mechanically determined by the statistical properties of the estimation and
inference methods. In other words, bandwidths much larger than the MSE-
optimal bandwidth will lead to estimated RD effects that have too much bias,
and bandwidths much smaller than the MSE-optimal choice will lead to RD
effects with too much variance. In both cases, point estimation will be unreli-
able, and so will be the conclusions from the falsification test. Similarly, if the
emphasis is on optimal inference, the sensitivity of the results should only be
explored for bandwidth values near the CER-optimal choice.

We illustrate this sensitivity approach with the Meyersson data for four
bandwidth choices close to the MSE-optimal and CER-optimal choices: (i)
the CER-optimal choice hCER = 11.629, (ii) the MSE-optimal choice hMSE =

17.239, (iii) 2 · hCER = 23.258, and (iv) 2 · hMSE = 34.478. Figure 22 shows the
local polynomial RD point estimators and robust 95% confidence intervals for
each bandwidth. The code is omitted, but is included in the replication files.
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Figure 22 Sensitivity to Bandwidth in the Continuity-Based Approach
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The results based on the CER-optimal choice hCER = 11.629 are consis-
tent with the results based on the MSE-optimal choice hMSE = 17.239 in that
they both lead to a similar point estimate, but the CER-optimal choice re-
sults in a longer confidence interval according to which the effect cannot be
distinguished from zero at conventional levels. The two largest bandwidths,
2 · hCER = 23.258 and 2 · hMSE = 34.478, lead to results that are broadly consis-
tent with the empirical findings obtained with the MSE-optimal choice.

5.6 Further Reading

The density test to detect RD manipulation was first proposed by McCrary
(2008). Cattaneo, Jansson, and Ma (2019) develop the local polynomial den-
sity estimator implemented in rddensity; see also Cattaneo, Jansson, and Ma
(2018) for details on this statistical package and further numerical evidence.
Frandsen (2017) develops a related manipulation test for cases where the score
is discrete. The importance of falsification tests and the use of placebo out-
comes is generally discussed in the analysis of experiments literature (e.g.,
Rosenbaum, 2002, 2010; Imbens and Rubin, 2015). Lee (2008) applies and
extends these ideas to the context of RD designs, and Canay and Kamat (2018)
develop a permutation inference approach in the same context. Ganong and
Jäger (2018) develop a permutation inference approach based on the idea of
placebo RD cutoffs for the Kink RD designs, Regression Kink designs, and
related settings. Finally, falsification testing based on donut hole specifications
is discussed in Bajari, Hong, Park, and Town (2011) and Barreca, Lindo, and
Waddell (2016), among others.

6 Final Remarks
We have discussed foundational aspects of identification, estimation, inference,
and falsification in the Sharp RD design, when the parameter of interest is the
average treatment effect at the cutoff. Because our goal in this Element was
to discuss the conceptual foundations of RD methodology, we focused on the
simplest possible case where (i) there is a single running variable, (ii) there is
a single cutoff, (iii) compliance with treatment assignment is perfect, (iv) the
running variable is continuous and hence has no mass points, (v) the object
of interest is the average treatment effect at the cutoff, and (vi) results are
based on continuity and smoothness assumptions. This canonical setup is the
most standard and commonly encountered in empirical work dealing with RD
designs.

In the accompanying Element (Cattaneo, Idrobo, and Titiunik, forthcom-
ing), we discuss several departures from the canonical Sharp RD design
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setting. The first topic we consider is an alternative interpretation of the RD
design based on the idea of local random assignment. In contrast to the
continuity-based approach adopted in this Element, the local randomization
approach assumes that there is a window around the cutoff where the treat-
ment can be assumed to have been as-if randomly assigned, and the analysis
proceeds by adopting the usual tools from the analysis of experiments. This
approach is also well suited to analyze RD designs where the running variable
is discrete with relatively few mass points, a situation that occurs often in prac-
tice and we also discuss in detail. Additional topics covered in the accompany-
ing Element include the Fuzzy RD design, where compliance with treatment
is imperfect, RD settings with multiple running variables, which have as an
important special case the geographic RD design where treatment assignment
depends on the spatial distance to the border between geographic regions, and
RD setups where treatment assignment depends on multiple cutoffs instead of
only one.

We hope that the discussion in this Element, together with the additional
methods presented in the accompanying Element, will provide a useful and
practical template to guide applied researchers in analyzing and interpreting
RD designs in a principled, rigorous, and transparent way.
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The goal of our two Elements is purposely practical and hence we fo-
cus on the empirical analysis of RD designs. We do not seek to provide a
comprehensive literature review on RD designs nor discuss theoretical aspects
in detail. In this first Element, we employ the data of Meyersson (2014) as
the main running example for empirical illustration. We thank this author for
making his data and codes publicly available. We provide complete replication
codes in both R and Stata for the entire empirical analysis discussed through-
out the Element and, in addition, we provide replication codes for a second em-
pirical illustration using the data of Cattaneo, Frandsen, and Titiunik (2015).
This second empirical example is not discussed in the text to conserve space,
and because it is already analyzed in our companion software articles.

Data Availability Statement
R and Stata scripts replicating all the numerical results are available at
www.cambridge.org/introRDD, and can be run interactively on-line via
Code Ocean (hyperlinks for each section are given below). Finally, the lat-
est version of the general-purpose, open-source software we use, as well as
other related materials, can be found at:

https://sites.google.com/site/rdpackages/

Code Ocean Links
Section 2: https://doi.org/10.24433/CO.c7e5a4c5-4121-46be-8475-
9e2801b8fe72

Section 3: https://doi.org/10.24433/CO.ea6d374e-0c21-4e33-954d-
d515eeb2ede2

Section 4: https://doi.org/10.24433/CO.3a66e725-79d0-49d2-8b25-
dfce0a21dc8b

Section 5: https://doi.org/10.24433/CO.6aabed78-9a72-4b02-85be-
2cc9f0c7f882
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